MORE POWER QUALITY MONITORING: with new AGR-31B “H” relay

Air Circuit Breakers

TemPower
Terasaki supply circuit breakers which protect people and equipment from electrical faults. Safety and protection are the prime purposes of our products. We supply products to switchboard builders, shipbuilders and equipment manufacturers. We are global market leaders for switchgear in the marine market. Terasaki have worldwide export experience and the necessary professional skills to support your business.

Safe Mode
A safe mode can be enabled during switchboard maintenance. Two independent INST thresholds can be saved in on-board memory. The user can toggle INST settings quickly via the LCD menu or over the data communication link. A lower INST threshold will reduce the incident arc energy. Settings can be quickly returned to normal after maintenance to provide optimum performance.

Accurate Setting
Overload protection settings can be matched exactly to the circuit needs. LTD current threshold settings can be fine-tuned to the nearest Ampere.

New Alarms
Under/over-voltage; under/over-frequency. Take action automatically if these parameters go outside your acceptable limits. Volt-free output contacts included. AVAILABLE AS AN OPTIONAL EXTRA FEATURE OF AGR-31B..-..H.

Harmonics
Harmonic current measurement. Identify loads causing harmonic pollution, optimise harmonic filtering and ultimately save money with this new feature. Monitors individual harmonic currents per phase at each harmonic order. INCLUDED AS STANDARD WITH AGR-31B..-..H.
High AC voltages are used to minimise cable costs for installations where long cable runs are necessary.

Terasaki supply ACBs for large solar farms, mines and railways. The latest additions to our range are the AR316H-V8, AR315H-V8 & AR3332-V8 which can all interrupt 30kA at 800VAC.

Terasaki now offer a new broad range of dedicated DC air circuit breakers and moulded case circuit breakers. The range of Terasaki DC circuit breakers are ideally suited for all types of industries, information technology and communication sectors where highly reliable sources of electric power are required.

DC ACBs are suitable for 600V and 800V DC applications. [Standard AR ACBs (S&H types) are only suitable for 250V DC applications].
Contact temperature monitoring function (optional)

This function monitors the temperature of the ACBs main contacts. An alarm indicates when the temperature exceeds the withstand temperature of the contacts. Continuous monitoring of the contact temperature provides valuable input for preventative and predictive maintenance programmes.

3C overheating protection is new and unique!

It is only available from Terasaki for TemPower 2 ACBs and TemBreak 2 MCCBs.
Mr. Taizo Terasaki
President

Mr. Masakazu Fujita
Chairman

Mr. Yasuhiko Terasaki
Late chairman of the company

Mr. Yasutaro Terasaki
Founder of the company

“We want to meet the needs of more customers around the world in our circuit breaker and lifecycle service businesses.”

Mr. Taizo Terasaki, President

Features

TERASAKI PROFILE

NUCLEAR POWER:
Ringhals, Sweden

SOLAR POWER:
South Italy

DESALINATION PLANT:
Spain

MARINE:
Oil Tanker “Belokamenka”, Russia

MINING:
BHP Billiton, Australia

OIL PRODUCTION:
Sakhalin Island, Russia

ALUMINIUM SMELTER:
ALBA, Bahrain

DATA CENTRE:
Telehouse London, UK

AUTOMOTIVE:
Toyota Manufacturing Plant, Argentina

6 | TemPower 2 Air Circuit Breakers
We are meeting the needs of customers with a complete system of development, design and manufacture based on the know-how we have accumulated with electrics, electronics and control over the decades since our founding.

We have DEKRA (formerly KEMA)-approved test systems and two generators in house to carry out the necessary development tests.

Terasaki realises optimised products through 3D CAD, software development, mould and sheet metal design, structural design and resin flow analysis.

CAPABILITIES

Safety & Reliability
High MTBF; Low MTTR; temperature monitoring, double control circuits

Approvals
ISO 9001; ISO 14001; OHSAS 18001; Lloyds; BV; GL; GOST; SABS; DEKRA (KEMA); ASTA; IEC 60947-2; IEC 61439; IEC 60898

Asset Management
Retrofits; Preventative Maintenance; Lifecycle Management

Special Protection Solutions
DC; PV; UPS; 1000V AC; Integrated residual protection; 100kA and above
1. **Patented High Performance 5000A and 6300A ACBs**
The air circuit breaker interrupts the current at two points on the line side while dissipating heat from contacts or terminals by efficient air convection through pressure valve.

2. **Double opening and closing coils**
Double Opening and Closing Coils provides extended control system redundancy to an ACB. Double coils allow designers to implement back-up tripping and closing systems. It provides the end-user with ultimate reliability on critical UPS circuits connected to critical loads.

3. **Fast interruption by unique “Double Break” system**
The unique “DoubleBreak” main contact system ensures extremely fast interruption of short circuit currents and substantially reduces main contact wear. The internally symmetrical “DoubleBreak” structure means the moving contact is isolated from the supply voltage even when the ACB is reverse connected. TemPower 2 ACBs up to 4000A use DoubleBreak technology.

4. **Easy Maintenance**
The unique design of TemPower 2 incorporates its isolating clusters and main contacts on the ACB body. The main contacts and isolating clusters may be maintained without having to isolate the switchboard.

5. **Replacement of the main contacts**
The fixed and moving contacts can easily be replaced in the field, thus prolonging the life on the circuit breaker. Changing each pole takes around 15 minutes.

*Not available on AR6

CUSTOMER ENDORSEMENT

“The performance of Terasaki’s ACBs was proven on site when a main busbar failed in one of the switchrooms. The ACB was reclosed on the short-circuit fault twice during fault diagnosis and is still in operation following a service by Terasaki.”

Andy Oswald, BAA (Airport Operating Company, UK)
How to use the Catalogue for TemPower 2

Understanding and employing TemPower 2 special features

Choosing a TemPower 2 ACB

Choosing accessories and protection relay

Installing the TemPower 2 ACB

Technical data

Useful related products and services

TemPower 2 Order Form
SECTION 1

Understanding and employing TemPower 2 special features

Protection Features .. 12-15

Performance Features ... 16

ACB Accessory Overview .. 17

Appearance .. 18
Protection Features

AGR-11B

Protection Functions
- Dial Adjustment
 - L – Long Time
 - S – Short Time
 - I – Instantaneous

Optional Protection Functions
- Unrestricted Ground Fault
- Neutral Protection

Manual Reset
(Optional - AGR-11BL-AS
AGR-11BL-GS)

AGR-21B

Protection Functions
- LCD Ammeter
 - L – Long Time
 - S – Short Time
 - I – Instantaneous
 - Pre-Trip (load shedding)
 - Fault Indication Contacts

Optional Protection Functions
- Ground Fault (Unrestricted or Restricted)
- Neutral Protection
- Communication
- Phase Rotation Protection
- Generator Protection Curves
- IDMT Protection Curves
- Field Test

AGR-31B

Protection Functions
- Back-Lit Energy Analysers
 - L – Long Time
 - S – Short Time
 - I – Instantaneous
 - Pre-Trip (load shedding)
 - Fault Indication Contacts

Optional Protection Functions
- Ground Fault (Unrestricted or Restricted)
- Neutral Protection
- Reverse Power
- Zone Interlocking
- 3C Overheating Protection
- Communication
- Phase Rotation Protection
- Generator Protection Curves
- IDMT Protection Curves
- Field Test
- Under/over Frequency
- Under/over Voltage Alarm
- Harmonic Monitoring
- Event history
- Dual settings capability

Non-Automatic (switch-disconnector) versions without protection are available in every frame size.
Protection Features

Overload Protection
Adjustable from 40-100% of rated current. Thermal memory is available on the AGR21B.31B.

Reverse power trip function (S-characteristic)
This feature provides additional protection when paralleling generators. The AGR22B/31B protection relay for generator protection with the reverse power trip function, negates the need for installation and wiring in an external reverse power relay. This feature is available using an AGR protection relay with a generator “S” type characteristic only. (ANSI-32R)

Two channel pre-trip alarm function (optional)
This function can be used to monitor critical circuits. For example, the function can be set so that when a pre-trip alarm is activated, non-essential loads can be switched off. This feature is only available on AGR22B/31B protection relay models with a generator “S” characteristic.

Advanced LCD display, Protection Relay
The AGR-31B protection relay comes standard with the backlit LCD display. It can monitor and indicate phase currents, voltages, power, energy, power factor, frequency and more. For features refer to page 40. The backlit LCD is optional for AGR-21B and AGR-22B.

Remote Communications Protocols (optional)
Data communications via Modbus, an open network, are supported.

Energy Measurement
I, V, kW, MWh, kVar, cosφ, frequency, harmonics

Intelligent Fault Analysis
Status, fault type, fault size, tripping time, fault history

Maintenance Information
Trip circuit supervision, contact temperature monitoring. For details please refer to page 14.

For other protocols please contact Terasaki.

Health & Safety

Earth leakage trip function
Used in conjunction with Zero phase Current Transformer (ZCT), this function provides protection against leakage to earth of very small levels of current. Trip or alarm indication, and contact output is available to enhance the level of system protection.

Phase rotation protection function
This function detects the negative-phase current occurring due to reverse phase or phase loss and prevents burnout of a motor or damage to equipment.

Under/over voltage protection (ANSI 27A/810) (optional).
Under/over frequency protection (ANSI 81U/59A) (optional).

3C Overheating Protection (optional)
This function monitors the temperature of the ACBs main contacts. An alarm indicates when the temperature exceeds the withstand temperature of the contacts. Continuous monitoring of the contact temperature provides valuable input for preventative and predictive maintenance programmes. This option can be used with communication.

New Features (more details on page 3)
Two independent INST thresholds for quick toggling of safe mode.
Fine adjustment of overload current LTD threshold to the nearest Ampere.
Harmonic current measurement.

For other protocols please contact Terasaki.
TemPower 2 is equipped with an optional communication interface unit that allows data exchange with a host PC via a Modbus open network. Data communication includes measurements, fault log, maintenance information, ON/OFF status, settings and control (ON/OFF/RESET) signals.

Fault log

<table>
<thead>
<tr>
<th>Cause</th>
<th>Whichever trip functions, LTD, STD, INST or GF is activated is then transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault current</td>
<td>The fault current at which the breaker tripped open is transmitted</td>
</tr>
<tr>
<td>Trip pick-up time</td>
<td>The trip pick-up time is transmitted</td>
</tr>
</tbody>
</table>

Maintenance Information

| Tripping circuit monitoring | The tripping coil is always monitored for disconnection. If the breaker is not open within approx. 300 ms of a trip signal delivered from the OCR, an alarm signal is generated. |

Data Measurement

<table>
<thead>
<tr>
<th>Item</th>
<th>Modbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission standard</td>
<td>RS-485</td>
</tr>
<tr>
<td>Transmission method</td>
<td>Two-wire half-duplex</td>
</tr>
<tr>
<td>Topology</td>
<td>Multi-drop bus</td>
</tr>
<tr>
<td>Transmission rate</td>
<td>19.2 kbps max</td>
</tr>
<tr>
<td>Transmission distance</td>
<td>1.2 km max (at 19.2 kbps)</td>
</tr>
<tr>
<td>Data format</td>
<td>Modbus-RTU or ASCII</td>
</tr>
<tr>
<td>Max number of nodes</td>
<td>1 - 31</td>
</tr>
</tbody>
</table>

Communication network

- Modbus
 - Up to 31 units can be connected per system
Protection Features

Optimum protective co-ordination

Why use a separate panel mounted protection relay when you can have all the benefits of I.D.M.T. protection integral to the ACB?

TemPower 2 is available with a choice of flexible protection curves to assist in selectivity applications.

S.I. Standard Inverse
V.I. Very Inverse
E.I. Extremely Inverse

All these curves are user definable and comply with IEC 60255-3. Standard transformer and generator protection characteristics are also available.

AGR-L Industrial & transformer protection
AGR-S Generator protection
AGR-R Characteristics to IEC 60255-3

Zone interlocking

In conventional discrimination systems, short time delays are used to allow a short-circuit current to be tripped by the circuit breaker nearest the fault. The disadvantage of this type of system is during a fault considerable thermal and mechanical stresses are placed on the entire system. With the TemPower 2 Z Interlock system the breaker nearest the fault will trip first, irrespective of the short time delay setting or ground fault trip time delay setting.

Example of operation:

If a fault occurs in Zone 2, only AR Z Interlock ‘A’ will sense any fault current fault, a no fault signal will be sent by AR Z Interlock ‘B’ and ‘C’, consequently AR Z interlock ‘A’ trips the ACB immediately, overriding its short time delay.
Double opening and closing coils

Double Opening and Closing coils provides extended control system redundancy to an ACB. Double coils allow designers to implement back-up tripping and closing systems. It provides the end user with ultimate reliability on critical UPS circuits connected to critical loads.

Earthing Device

The unique design of TemPower 2 ACBs allows for the earthing of either the busbar (line) or the circuit (load) of a low voltage system; thus allowing system flexibility.

Some other manufacturers only offer one option either, busbar or circuit earthing.

For full details refer to page 36.

Protection Relay performance

Ensure that the ACB you specify suffers no loss of performance when tripped by an external protection relay.

The TemPower 2 ACB suffers no loss in performance when tripped through an external protection relay.

Some competitor’s ACBs have reduced breaking performance when an external protection relay is used.
ACB Accessory Overview

Position Switches
Open / Close Counter
Auxiliary Switches
Interpole Barriers
Lifting Plates
IP3X Chassis Protection Cover
Fixing Bolts (For Draw Out ACBs)
Storage Draw Out Handle

Shunt Trip Coil
Capacitor Shunt Trip 48V DC
Double Opening/Closing Coils
Trip Indicator Switch
Spring Status Switch
Motor Operator

Lifter Loader
Protection Relay Checker
Tropicalisation, Anti-Corrosion, Cold Climate treatments
Test Jumper
Step Down Transformer 440V to 220V
Mechanical Interlock, Key Interlock, Castell Interlock
Shutter Truck
<table>
<thead>
<tr>
<th>Type</th>
<th>Standard</th>
<th>Standard</th>
<th>High fault</th>
<th>Standard</th>
<th>Standard</th>
<th>High fault</th>
<th>Standard</th>
<th>High fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPERE RATING (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RATED CURRENT (max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Primary Current of Over-Current Release (Iz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Over-Current Release (Iz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Insulation Voltage (U)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Operational Voltage (Us)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Breaking Cap (ka rms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS (t), IEC, EN, AS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Poles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Over-Current Release (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Values in open air at 40°C (45°C for marine applications).
- Values of AR208S, AR212S, AR16S for draw-out type with horizontal terminals. Values of the other ACBs for draw-out type with vertical terminals.
- For 2 pole ACBs use outside poles of 3 pole ACB.
- Spools ACBs without Neutral phases protection can not apply IT earthing system.
- Cannot apply IT earthing system, i.e., insulated from earth.
- For 500V AC.
- AGC protection relays cannot be used for DC. Please contact TERASAKI.

Rating Details:
- **Type:** AR208S, AR212S, AR16S
- **Application:** Suitable for air circuit breakers
- **Ratings:**
 - **Rated Current (max):**
 - **Rated Primary Current of Over-Current Release (Iz):**
 - **Rated Over-Current Release (Iz):**
 - **Rated Insulation Voltage (U):**
 - **Rated Operational Voltage (Us):**
 - **Rated Breaking Cap (ka rms):**

Outline Dimensions (mm):
- **Standard:** 354 x 439
- **High fault:** 354 x 439

Note:
- When the INST trip function is set to NON, the MCR function should be enabled.
Ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AR320H</td>
<td>2000</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>AR325H</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR325S</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR332H</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR440S</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR440SB</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR332S</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR325S</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>AR440SB</td>
<td>2000</td>
<td>2000</td>
<td>3000</td>
</tr>
</tbody>
</table>

Table Legend

- **High fault** column: Breaker capacity in amperes for high fault conditions.
- **Standard** column: Breaker capacity in amperes for standard conditions.
- Breaker models include AR320, AR420, AR325, AR332, AR440, AR440SB, AR325S, AR332S, AR440S, AR440SB.

Table Values

- **AR420H**: 2000 A high fault, 2000 A standard.

Choosing a TemPower 2 ACB | 21
Specifications

TemPower 2 series ACBs have an extensive range of accessories available, enabling the ACBs to be “custom built” to suit every application.

ACB type

<table>
<thead>
<tr>
<th>Standard Series</th>
<th>AR208S</th>
<th>AR212S</th>
<th>AR216S</th>
<th>AR220S</th>
<th>AR225S</th>
<th>AR325S</th>
<th>AR332S</th>
<th>AR440S</th>
<th>AR440S</th>
<th>AR560S</th>
<th>AR663S</th>
</tr>
</thead>
<tbody>
<tr>
<td>High fault Series</td>
<td>AR12H</td>
<td>AR16H</td>
<td>AR20H</td>
<td>AR31H</td>
<td>AR32H</td>
<td>AR42H</td>
<td>AR44H</td>
<td>AR63H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of mounting

- **Fixed type**
 - Vertical terminals
 - Horizontal terminals

- **Draw-out type**
 - Front connections

Spring charged operation

- **Manual charging**
- **Motor charging**

Protection relay

- **For general feeder circuit (L, R)**
 - Protection Relay Type AGR-21,228,31B
 - LT, ST, INST or MCR

- **For generator protection (S)**
 - Protection Relay Type AGR-11B
 - LT, ST, INST

Operation indication

- **(via Individual contacts)**
- **(via single contact)**

Auxiliary switches with 4c contacts arrangement

- **Normal environment**
- **Special environment**

Note:

1. Not applicable to ACBs equipped with front connections.
2. Applicable to 4-pole ACBs.
3. Required for ground fault protection for 3-poles ACB on 3-phase, 4-wire systems.
4. Microload switch assembly with 3c arrangement available.
5. Vertical terminal is standard and horizontal terminal is optional for High fault series. Front connection is not available for High fault series.

- **TempPower2 suited to your application**
Choosing a TemPower 2 ACB

Types of Mounting

Draw-out type

This type of ACB consists of a breaker body and a draw-out cradle. The breaker body can be moved within or removed from the draw-out cradle that is fixed in the switchboard.

There are four breaker body positions: CONNECTED, TEST, ISOLATED and WITHDRAWN. The switchboard panel door can be kept closed in the CONNECTED, TEST and ISOLATED positions (“shut-in three positions).

Fixed type

This type of ACB has no draw-out cradle and is designed to be directly mounted in the switchboard.

Terminal arrangements

Main Circuit terminals

Three (3) types of main circuit terminal arrangements are available: vertical terminals, horizontal terminals and front connections. Different types of terminal arrangements can be specified for the line and load sides.

Note: The max. rated current [In] may be reduced depending on the main circuit terminal arrangement. For more information see page 84.

Control circuit terminals

Control circuit terminals are front located to allow easy wiring/access. The terminal blocks (for auxiliary switches, position switches and control circuits) are positioned on the top of the ACB front panel and can be accessed from the front for wiring.

M4 screw terminals are standard.
Choosing Accessories and a Protection Relay

ACB Accessories

- Accessories for draw-out type ... 26
- Position Switches .. 27
- Spring Charged Operation .. 28-29
- Trip Devices .. 30-31
- Other Accessories .. 32-36

Protection Relays

- Protection Relay Selection Table ... 42-43
- L-characteristic for general feeder circuits (Type AGR-11BL, 21BL, 31BL) ... 44-45
- R-characteristic for general feeder circuits (Type AGR-21BR, 31BR) .. 46-47
- S-characteristic for general feeder circuits (Type AGR-21BS, 22Bs, 31BS) .. 48-49
- Protection Relay Accessories ... 50-51
The main circuit safety shutters automatically conceal the main circuit contacts on the draw-out cradle when the ACB is drawn out.

- The top and bottom shutters operate independently and can be separately padlocked in the closed position.
- Up to three padlocks (with ø.6 hasp) can be installed on each side using padlocking unit. (Padlock not supplied).
- In the closed position, the shutters be easily unlocked by hand. They can be unlocked and held open if required for the purpose of inspection or maintenance.

Control circuit safety shutters
The control circuit safety shutter covers the control circuit contacts, ensuring safety.

Test jumper
The test jumper is a plug-in type, and allows ON-OFF tests on all the TemPower 2 series ACBs with the breaker body drawn out from the draw-out cradle. The standard jumper cable is 5 m long.

Position padlock lever
Using the position padlock lever prevents the breaker body from inadvertently being drawn out. The position padlock lever in the pulled-out position locks the breaker body in the CONNECTED, TEST or ISOLATED position. Up to 3 padlocks (with ø.6 hasp) can be installed (supplied as standard).

Mal-insertion prevention device
Interchangeability exists within the TemPower 2 series of ACBs. Because of this feature, there is a possibility for an ACB of a different specification being placed into the draw-out cradle. Using the mal-insertion prevention device eliminates such a possibility.

This device is capable of distinguishing nine different breaker bodies.

Please specify the Code 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C for each ACB.
Position Switches

The position switch operates to give an indication of the breaker position: CONNECTED, TEST, ISOLATED and INSERT. There are two contact arrangements: 2c and 4c.

Connections to the switches are made via screw type terminals.

The following table lists the available types of the switches:

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of contacts</th>
<th>Contact Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INSERT</td>
<td>ISOLATED</td>
</tr>
<tr>
<td>ALR-0110P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALR-0101P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALR-0011P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0200P</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ALR-0020P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0002P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALR-1111P</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALR-1210P</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ALR-1201P</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ALR-0211P</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ALR-1120P</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALR-1021P</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0121P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALR-1102P</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALR-1012P</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0112P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALR-0220P</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ALR-0202P</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ALR-0022P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALR-1030P</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0130P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALR-00031P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALR-1003P</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0103P</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ALR-0013P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALR-0004P</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The door interlock prevents the switchboard door from being opened unless the breaker body is in the ISOLATED position. When the draw-out handle is removed while the ACB is in the ISOLATED position, the interlock is released and the switchboard door can be opened.

The breaker body cannot be inserted unless the switch board door is closed. Contact Terasaki for details.

Note 1: When the door interlock is installed, the standard draw-out handle cannot be stored in the switchboard. A storage drawout handle is available as an option. The storage draw-out handle can be housed flushed with the front surface of the ACB. (The storage handle will incur an extra cost).

Note 2: Door interlock not compatible with fixing bolts unless suitable panel door is arranged.
Spring Charged Operation

Manual charging type
For this type of ACB, the closing springs are charged by means of the spring charging handle. ON/OFF operation of the ACB is performed by means of the ON/OFF buttons on the ACB.

- **Charging the closing springs**
 Pumping the spring charging handle by hand charges the closing springs.

- **Closing the ACB**
 Pressing the ON button on the ACB closes the ACB.

- **Opening the ACB**
 Pressing the OFF button on the ACB opens the ACB. The ACB cannot be closed as long as the OFF button is pressed.

Motor charging type
For this type of ACB, the closing springs are charged by means of a motor. ON/OFF operation of the ACB can be performed remotely. A manual charging mechanism is also fitted to facilitate inspection or maintenance work.

- **Charging the closing springs**
 A motor is used to charge the closing springs. When the closing springs are released to close the ACB, they are automatically charged again by the motor for the next ON operation.

- **Closing the ACB**
 Turning on “remote” ON switch enables the ACB to be remotely closed.
 - Anti pumping mechanism
 Even if the ON switch is kept on, ACB closing operation is performed only once. To close the ACB again, remove the ON signal to reset the anti-pumping mechanism and then reapply the ON signal.
 - If ON and OFF signals are simultaneously given to the ACB, the ON signal is ignored.
 - ON signal should be given to the ACB on an over 200ms after OFF signal.

- **Opening the ACB**
 For opening the ACB remotely specify the shunt trip device (see page 30) or the undervoltage trip (see page 31).

Operation power supply

<table>
<thead>
<tr>
<th>Rated voltage (V)</th>
<th>Applicable voltage range (V)</th>
<th>Operation power supply ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHARGE/ON operation</td>
<td>OFF operation (Note 1)</td>
</tr>
<tr>
<td>AC100</td>
<td>85-110</td>
<td>7</td>
</tr>
<tr>
<td>AC110</td>
<td>94-121</td>
<td>7</td>
</tr>
<tr>
<td>AC120</td>
<td>102-132</td>
<td>7</td>
</tr>
<tr>
<td>AC200</td>
<td>170-220</td>
<td>4</td>
</tr>
<tr>
<td>AC220</td>
<td>187-242</td>
<td>4</td>
</tr>
<tr>
<td>AC240</td>
<td>204-264</td>
<td>4</td>
</tr>
<tr>
<td>DC24</td>
<td>21-26</td>
<td>14</td>
</tr>
<tr>
<td>DC48</td>
<td>41-53</td>
<td>10</td>
</tr>
<tr>
<td>DC100</td>
<td>85-110</td>
<td>6</td>
</tr>
<tr>
<td>DC110</td>
<td>94-121</td>
<td>6</td>
</tr>
<tr>
<td>DC125</td>
<td>107-138</td>
<td>6</td>
</tr>
<tr>
<td>DC200</td>
<td>170-220</td>
<td>4</td>
</tr>
<tr>
<td>DC220</td>
<td>187-242</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: For the ratings refer to the shunt trip device on page 30.
* Split circuit for motor and closing coil available on request.
ACB Accessories

Accessories for Spring Charged Operation

Automatic closing spring release

This device allows the charged closing springs to be automatically released when the ACB is drawn out.

ANSI or NEMA-compliant ACBs require this option.

Spring charge indicator

This switch can be used to indicate that the closing springs have been fully charged.

- Normal contacts for general service

<table>
<thead>
<tr>
<th>Rated control voltage</th>
<th>Switch contact ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistive load</td>
</tr>
<tr>
<td>AC 250</td>
<td>3</td>
</tr>
<tr>
<td>DC 250</td>
<td>0.1</td>
</tr>
<tr>
<td>DC 125</td>
<td>0.5</td>
</tr>
<tr>
<td>DC 30</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum applicable load is DC24V 10mA.

- Gold contacts for microload

<table>
<thead>
<tr>
<th>Rated control voltage</th>
<th>Switch contact ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistive load</td>
</tr>
<tr>
<td>AC 250</td>
<td>0.1</td>
</tr>
<tr>
<td>DC 30</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Minimum applicable load is DC24V 1mA.

Step-down transformer (external)

The maximum rated control voltage applicable to the operation power supply is AC240V. For higher voltages, a step-down transformer is needed.

The following step-down transformers are available as options:

<table>
<thead>
<tr>
<th>Rated control voltage</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td>AC410 - 470VT</td>
<td>SE-30M</td>
</tr>
<tr>
<td>AC350 - 395VT</td>
<td>SE-30M</td>
</tr>
</tbody>
</table>
Trip Devices

Continuously-rated shunt trip device
The continuous rated shunt trip device allows the ACB to be opened when an external protection relay against overcurrent or reverse power is activated.

Because of its continuous rating, the device can also be used to provide an electrical interlock to the ACB.

Continuously rated shunt trip and undervoltage trip can not be fitted to the same ACB. However by fitting a special continuously rated shunt trip to the side plate of an ACB chassis will allow an undervoltage trip to be used in conjunction with a continuously rated shunt trip. A mechanical interlock cannot be fitted with this combination.

Instantaneously rated shunt trip also available with special specification. This shunt trip can be fitted with undervoltage trip to the same ACB.

Special double opening and closing coils are available.

Capacitor trip device
In conjunction with the continuously-rated shunt trip device, the capacitor trip device can be used to trip the ACB within a limited period of 30 sec if a large voltage drop occurs due to an ac power failure or short-circuit.

When the continuously-rated shunt trip is used with a capacitor trip device, “a” contact of auxiliary switch of ACB should be inserted in series, otherwise internal damage may occur.

<table>
<thead>
<tr>
<th>Type</th>
<th>Rated voltage (V)</th>
<th>Operational voltage (V)</th>
<th>Max excitation current (A)</th>
<th>Opening time (max.) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC100</td>
<td>AC70-110</td>
<td>0.29</td>
<td></td>
<td>50 Hz</td>
</tr>
<tr>
<td>AC110</td>
<td>AC77-121</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC120</td>
<td>AC84-132</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC200</td>
<td>AC140-220</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC220</td>
<td>AC154-242</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC240</td>
<td>AC168-284</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC24</td>
<td>DC16.8-26.4</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC30</td>
<td>DC21-33</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC34</td>
<td>DC33.5-52.8</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC100</td>
<td>DC70-110</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC110</td>
<td>DC77-121</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC125</td>
<td>DC87-137.5</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC200</td>
<td>DC140-220</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC220</td>
<td>DC154-242</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: It is not possible to test the capacitor trip device when the test jumper is used.

- Control Circuit

- Outline Dimensions

*1: Use Auxiliary Switch for capacitor trip
Choosing accessories and a protection relay

ACB Accessories

Undervoltage trip device (UVT)

The undervoltage trip device (UVT) trips the ACB when the control voltage drops below the opening voltage. When the control voltage is restored to the pick-up voltage, the ACB can be closed. The pick-up voltage is fixed to 85% of the rated voltage.

The UVT consists of a tripping mechanism and an undervoltage trip control device. The trip control device is available in two types: AUR-ICS and AUR-ICD.

Type AUR-ICS provides an instantaneous trip (below 200ms) to the ACB when the control voltage drops below the opening voltage.

Type AUR-ICD provides a delayed trip to the ACB when the control voltage remains below the opening voltage for at least 500ms. ※

Adding a pushbutton switch (with normally opened contacts) between terminals [24] and [30] allows the ACB to be tripped remotely.

※ Time-delay trip over 1 sec. or 3 sec. is available as special specification

Undervoltage trip control circuit (for AC)

It takes max. 1.5 sec. for UVT coil to be absorbed after the rated voltage is applied to the undervoltage trip device. Therefore, for the closing command, the closing signal should be applied on and over 1.5 sec. after the rated voltage is applied.

<table>
<thead>
<tr>
<th>Type of UVT Control Device</th>
<th>Rated Voltage 50/60Hz (V)</th>
<th>Opening Voltage (V)</th>
<th>Pick-up Voltage (V)</th>
<th>Coil Excitation Current (A)</th>
<th>Power Consumption (VA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>AC</td>
<td>100</td>
<td>35-70</td>
<td>85 or less</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>38.5-77</td>
<td>93.5 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>42 - 84</td>
<td>102 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>70 - 140</td>
<td>170 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>77 - 154</td>
<td>187 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>84 - 168</td>
<td>204 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>133 - 266</td>
<td>323 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 ≈ 3</td>
<td>140 - 290</td>
<td>340 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>415</td>
<td>145 - 290</td>
<td>352 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>154 - 308</td>
<td>374 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>450 ≈ 3</td>
<td>157.5 - 315</td>
<td>382.5 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>480 ≈ 3</td>
<td>168 - 336</td>
<td>408 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>24 ≈ 3</td>
<td>8.4 - 16.8</td>
<td>20.4 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 ≈ 3</td>
<td>16.8 - 33.6</td>
<td>40.8 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 ≈ 3 ≈ 4</td>
<td>35 - 70</td>
<td>85 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220V ≈ 3</td>
<td>※5</td>
<td>※5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 3: Special specification
※ 4: Not possible to fit with Instantaneously rated shunt trip.
※ 5: Contact Terasaki
ON-OFF cycle counter

The ON-OFF cycle counter is a mechanical 5-digit readout that shows the number of ON-OFF cycles of the ACB.

Counter readings serve as a guide for maintenance or inspection.

Auxiliary switches

The auxiliary switches operate during the ACB ON/OFF operation.

Connections to the switches are made via screw terminals. The auxiliary switches for draw-out type ACBs operate in the CONNECTED and TEST positions.

The auxiliary switches for ACBs conforming to classification society’s rules operate in the CONNECTED position only. The auxiliary switches have change-over contacts and are available for general service and for microload.

Auxiliary switch ratings

<table>
<thead>
<tr>
<th>Category</th>
<th>For general service</th>
<th>For microload</th>
<th>Minimum applicable load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Resistive load (A)</td>
<td>Inductive load (A)</td>
<td>AC: cos ø = 0.3 ≤ 0.01</td>
</tr>
<tr>
<td>AC100-250V</td>
<td>5</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>AC251-500V</td>
<td>5</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>DC30V</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>DC125-250V</td>
<td>1</td>
<td>1</td>
<td>---</td>
</tr>
</tbody>
</table>

Normal contacts for general service

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Switch contact ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 250</td>
<td>3 3</td>
</tr>
<tr>
<td>250</td>
<td>0.1 0.1</td>
</tr>
<tr>
<td>DC 125</td>
<td>0.5 0.5</td>
</tr>
<tr>
<td>30</td>
<td>3 2</td>
</tr>
</tbody>
</table>

Gold contacts for microload

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Switch contact ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 250</td>
<td>0.1 0.1</td>
</tr>
<tr>
<td>DC 30</td>
<td>0.1 0.1</td>
</tr>
</tbody>
</table>

Minimum applicable load is DC24V 1mA.

Note 1: The chattering of b-contacts due to ON-OFF operation of the ACB lasts for less than 20 ms.

Note 2: Do not supply different voltages to contacts of a switch.

Momentary Trip Indicator/Closing Inhibited Indicator

This indicator contact has two applications:

1. It can indicate a trip by overcurrent release, shunt trip, undervoltage trip or manual pushbutton trip. Operation is according to the table. Note that indication is momentary (45ms) under some conditions. Use a relay holding circuit if continuous indication is required under these conditions.

2. The contact indicates that closing is inhibited by the status of closing springs, overcurrent release, shunt trip, undervoltage trip, pushbuttons or another interlock as described in the table.

Normal contacts for general service

<table>
<thead>
<tr>
<th>Cause of trip</th>
<th>Springs charged</th>
<th>Springs discharged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection relay</td>
<td>Switch is ON for 40ms, then reset to OFF</td>
<td>Switch remains ON until closing springs are charged</td>
</tr>
<tr>
<td>Shunt Trip</td>
<td>Switch is ON for 40ms, then reset to OFF</td>
<td>Switch remains ON until closing springs are charged</td>
</tr>
<tr>
<td>Remote opening function of UVT</td>
<td>Switch is ON for 40ms, then reset to OFF</td>
<td>Switch remains ON until closing springs are charged</td>
</tr>
<tr>
<td>Actual undervoltage condition</td>
<td>Switch is ON until undervoltage condition is restored to normal</td>
<td>Switch remains ON until springs are charged after undervoltage condition is restored to normal</td>
</tr>
<tr>
<td>Manual opening by pushbutton</td>
<td>Switch remains ON until pushbutton is released</td>
<td>Switch remains ON until springs are charged after pushbutton is released</td>
</tr>
</tbody>
</table>

Gold contacts for microload

Minimum applicable load is DC24V 1mA.
ACB Accessories

“Ready to close” contact (special specification)

The “ready to close” contact indicates that the ACB is in a ready to close status.

This contact operates when the following are valid:

- ON-OFF indicator shows “OFF”. (The ACB is in OFF position)
- Spring charge indicator shows “charged”
- Undervoltage trip is energised
- Shunt trip is not energised
- ACB is in the connected or test position
- Key lock and Key interlock are off
- Mechanical interlock is off

Key Lock

The key lock is available in two types: the lock-in ON type that locks the ACB in the closed position, and the lock-in OFF type that locks the ACB in the open position.

When the ACB is fitted with a key lock, the operator cannot operate the ACB unless using a matched key.

Key interlock

The key interlock is a system of interlocking between ACBs, each fitted with a key lock of lock-in OFF type.

- A key must be inserted to release the lock before the ACB can be closed
- The ACB must be opened and locked in the OFF position before the key can be removed.

By utilising the lock-in OFF type key lock feature, and then a limited number of keys by default provides an effective and reliable interlock system. Using the same keys also allows interlocking between and ACB and other devices (such as switchboard door).

ACBs can be supplied with a cylinder lock or type FS-2 Castell lock (with an angular movement 90° clockwise to trap key).

A double Castell interlocking facility suitable for applications such as UPS systems is available as a special specification, contact Terasaki Electric Europe, UK. Facility or full option including locks are available, please specify. For other lock types contact Terasaki. (Ronis available).

Example: Interlock for prevention of parallel feeding from two sources

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Resistive load</th>
<th>Inductive load</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 250</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DC 250</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>DC 125</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>DC 30</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Minimum applicable load is DC24V 10mA.

Ratings and Specifications

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Resistive load</th>
<th>Inductive load</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 250</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>DC 30</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Minimum applicable load is DC24V 1mA.

Example: Interlock for prevention of parallel feeding from two sources

Choosing accessories and a protection relay | 33
Mechanical interlocks (contact TERASAKI for details)

Cable type interlocks for 2 or 3 ACBs in either horizontal or vertical arrangements are available. Rod type mechanical interlocks are available for vertical interlocking of ACBs.

Interlocking is possible between any frame size within the TemPower 2 range.

In conjunction with an electrical interlock, it will enhance safety and reliability of power distribution systems.

Horizontal type

<table>
<thead>
<tr>
<th>Left ACB</th>
<th>Right ACB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR208S ~ AR220S</td>
<td>AR212H ~ AR220H</td>
</tr>
<tr>
<td>AR325S ~ AR332S</td>
<td>AR316H ~ AR332H</td>
</tr>
<tr>
<td>AR440S ~ AR440H (3P only)</td>
<td>AR440S</td>
</tr>
<tr>
<td>AR650S ~ AR663S</td>
<td>AR663H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3P 4P</td>
<td>3P 4P</td>
<td>3P 4P</td>
<td>3P 4P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600, 700, 800</td>
<td>600, 700, 800</td>
<td>600, 700, 800</td>
<td>600, 700, 800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900, 1000, 1100</td>
<td>900, 1000, 1100</td>
<td>900, 1000, 1100</td>
<td>1000, 1100, 1200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum pitch (550mm) is possible.
Specify the required pitch when ordering.
Maximum is 1200mm.
Contact TERASAKI for details of vertical type with 3 ACBs.

Vertical type

Minimum pitch (550mm) is possible.
Specify the required pitch when ordering.
Maximum is 1200mm.
Contact TERASAKI for details of vertical type with 3 ACBs.

- Interlock is enabled in the CONNECTED position. When the breaker body is in the TEST, ISOLATED or DRAW-OUT position, interlock is disabled.
- If all of two or three breakers receive a closing (on) signal, they all will turn off. This case however involves a momentary continuity between the main circuit and the auxiliary switch a-contact in all the breakers.
- The body of a draw-out type breakers, as long as it is off (open), can be drawn out or inserted, irrespective of the state of other breakers. (Do not draw out or insert a breaker body during cable installation, adjustment or operation check.)
Lifting Plate

Lifting plates are detachable tools that can be used to lift a breaker body out of a draw-out cradle.

Control circuit terminal cover

A control circuit terminal cover protects the terminal blocks for auxiliary switches, position switches and control circuits from being accidentally touched, thus enhancing safety.

ON-OFF button cover

An ON-OFF button cover prevents inadvertent or unauthorised operation of the ON or OFF button. It can be locked with up to three padlocks with ø.6 hasp (supplied as standard). Padlocks are not supplied.

Door Flange

A door flange can be used as a decoration panel that covers the cutout on the switchboard panel and provides IP20 protection. For IP31 protection please specify the door flange with a gasket.

Note: Door flange cannot be fitted with IP cover.

Contact Terasaki for Outline Dimensions of Door Interlock and Door Flange combination.

* Mount IP20 door flange through 6 mounting holes and IP31 door flange through 10 mounting holes.
OFF padlock (OFA)

Permits the ACB to be padlocked in the OFF position. Max, three padlocks with ø.6 hasp can be fitted. Padlocking is possible only when ON-OFF indicator shows OFF. When the ACB is padlocked in the OFF position both manual and electrical closing become inoperative, but the charging of the closing spring my manual or motor is still possible.

Note 1: OFF padlock facility cannot be fitted with key lock or key interlock.

Inter-pole barrier

An inter-pole barrier prevents a possible short circuit due to foreign objects entering between the poles of the main circuit terminals or between the line and load ends, thus enhancing operation reliability of the ACB.

This barrier can be applied to the draw-out type ACB with vertical terminals or horizontal terminals.

Earthing device

There is growing demand in L.V. distribution for greater protection against electric shock particularly during periods when maintenance work is being carried out on the main busbars or cables. A safe and economical way to meet this requirement is to apply system earthing via the normal service breaker. Earthing devices on TemPower 2 ACBs comprises: Permanent parts which are factory fitted by Terasaki and are mounted on the ACB chassis and body to enable the ACB to receive the portable parts. Portable parts are supplied in loose kit form and are fitted on to the ACB body by the customer’s engineer. This converts the ACB from a normal service device to an earthing device.

When the ACB is converted to the earthing device mode, the over-current release and the other electrical tripping devices are automatically disabled to prevent the remote opening of the ACB.

It is recommended that the ON-OFF operating buttons be padlocked to prevent manual opening of the ACB when used in the earthing mode.

Note: UVT function cannot be applied to the earthing device. Portable earthing device is not available for AR6, (earthing switch).

For further information contact Terasaki for details.

IP cover

An IP cover provides an IP55 grade of protection as defined in IEC 60529. Even if the breaker body is on the ISOLATED position, IP cover can still be fitted on the ACB.

When the ACB is converted to the earthing device mode, the over-current release and the other electrical tripping devices are automatically disabled to prevent the remote opening of the ACB.

For further information contact Terasaki for details.
Protection Relays

The AGR series of protection relays featuring high reliability and multiple protection capabilities is available for TemPower 2. Controlled by an internal 16-bit microprocessor, the protection relay provides reliable protection against overcurrent.

The protection relay range is divided into three groups: L-characteristic, R-characteristic (both for general feeder) and S-characteristic (for generator protection). Each group consists of:

- **Type AGR-11B**: Standard Protection relay with adjustment dial
- **Type AGR-21B**: Standard Protection relay with L.C.D. (Backlit L.C.D. optional)
- **Type AGR-31B**: Enhanced Protection relay with backlit L.C.D.

Optional protection functions of the Protection relay include those against ground fault, earth leakage, undervoltage and reverse power. Pre-trip alarm function can also be installed.

An AGR-11B overcurrent mechanical reset facility is available for special application. For more information contact Terasaki.

Protective functions

1. **Adjustable long time-delay function LT**

 RMS sensing is used to accurately read through distorted wave forms.

 In addition to the standard L and S-characteristics, the R-characteristic is available in five types for long time-delay trip. The R-characteristic can be used to give selectivity with e.g. fuses (see page 15).

 HOT start mode (applicable to L-characteristic of AGR-21B, 31B)

 HOT or COLD start mode is user-selectable.

 In HOT start mode, the Protection relay operates faster than in COLD start mode in response to an overload. The HOT start mode gives protection, taking account of the behaviour of loads under heat stress.

 Note: In the standard shipment mode, COLD start mode is selected.

2. **Adjustable short time-delay trip function ST**

 The ST delay trip function has a “definite time delay characteristic” and a “ramp characteristic”. These characteristics are selectable.

 The ramp characteristic provides close selectivity with downstream circuit breakers or fuses.

 The group AGR-L and AGR-R Protection relays come in operation with the definite time characteristic when the load current reaches 1000% or more of the rated current \([I_n]\) (500% or more of the rated current \([I_n]\) for AGR-S).

 The ST trip function is factory set to the definite time characteristic.

3. **Adjustable instantaneous trip function INST/MCR**

 The INST trip function trips the ACB when the short circuit current exceeds the pickup current setting, irrespective of the state of the ACB.

 The making current release (MCR) trips the ACB when the short circuit current exceeds the pickup current setting during closing operation. After the ACB is closed, the MCR is locked and kept inoperative.

 The INST and MCR are selectable for AGR-21B, 22B and 31B. (AGR-11B is INST only, MCR is not selectable).

 Note: The MCR needs the control power. If the control power is lost, the MCR provides the INST trip function only.
4. Adjustable pre-trip alarm function PTA

The pre-trip alarm function provides an alarm signal via the alarm contact (1a-contact) when the load current exceeding a predetermined value lasts for a predetermined time. A 2-channel pre-trip alarm function is available for S-characteristic. This function can be used to adjust feeding to loads according to their priority.

The pre-trip alarm is automatically reset when the load current drops to the predetermined value. Note that this function needs the control power.

5. Ground fault trip function GF

The peak value sensing is used (the residual current of each phase is detected).

The GF pickup current can be set between 10% and 100% of the CT rated primary current \(I_{CT} \). Not available if CT primary current \(I_{CT} \) is 200A or less.

< Ramp characteristic is added >

The ramp and definite time characteristics are selectable. The GF trip function comes into operation with the definite time characteristic when the load current reaches 100% or more of the CT rated primary current \(I_{CT} \).

The GF trip function is factory set to the definite time characteristic.

When using a 3-pole ACB in a 3-phase, 4-wire system, be sure to use an optional CT for neutral line (see page 51).

Note 1: The GF trip function usually comes with operation indications. If you need nothing but ground fault indication without a ground fault tripping operation, specify at the time of ordering.

Note 2: Restricted and unrestricted ground fault protection REF is available as option. This enables protection against ground fault on the line side of the ACB.

6. N-phase protection function NP

This NP function is available on 4-pole ACBs and prevents the neutral conductor from suffering damage or burnout due to overcurrent.

The NP trip pickup current can be set between 40% and 100% of the Protection relay rated primary current for L and R-characteristics. For AGR-11B, it is factory set to a value specified at the time of ordering.

Note 1: The NP trip function comes usually with operation indications. The NP time-delay setting is shared by the LT trip function.

Note 2: The HOT start mode is available for AGR-21B and AGR-31B. The operating time for the NP trip function is linked to that for the LT trip function.

7. Earth leakage trip function ELT

(For AGR-31B only)

In conjunction with Zero phase Current Transformer (ZCT), the ELT function provides protection against earth leakage. The ELT pick up current can be set at 0.2, 0.3 and 0.5A (Medium sensitivity) or 1, 2, 3, 5 and 10A (Low sensitivity). This function needs the control power.

Note 1: Contact Terasaki for outline dimension of ACBs fitted with ZCT.

Note 2: For details on specifications of the external ZCT, contact Terasaki.

Note 3: The ELT function usually comes with operation indications. If you need nothing but earth leakage indications without earth leakage tripping operation, specify at the time of ordering.

Note 4: Contact Terasaki for applicable models.

8. Reverse power trip function RPT

(For AGR-22B and AGR-31B only) (ANSI-32R)

The RPT function protects 3-phase generators running in parallel against reverse power. The RPT pickup current can be set in seven levels: 4% thru 10% of the generator rated power. If the rated main circuit voltage exceeds 250 VAC, a step-down power transformer is needed. When ordering the ACB, state the step-down ratio of the transformer you will use.

9. Contact temperature monitoring function OH

(For AGR-22B and AGR-31B only)

The HEAT function prevents the ACB from suffering damage due to overheat. It monitors the temperature of the ACB main contacts and gives an alarm on the LCD and an output signal via the alarm contact (1a-contact) when the temperature exceeds 155°C.

The alarm can be manually reset when the temperature drops to a normal temperature.

If you want to set the threshold temperature to a lower value, contact Terasaki.

This function needs control power.

Note 1: “Alarm” or “Trip” can be selected.

10. Negative Sequence Current Protection Function NS

(For AGR-21B and AGR-31B only) (ANSI-46)

This function detects the negative-phase current occurring due to reverse phase or phase loss and prevents burnout of a motor or damage to equipment. The protection setpoint ranges from 20% to 100% of the main circuit rated current \(I_n \).
Choosing accessories and a protection relay

Protection Relays

Undervoltage alarm function UVA

(For AGR-22B and AGR-31B only) (ANSI-27A)

This function monitors the main circuit voltage and gives an alarm on the LCD and an output signal via an alarm contact when the voltage drops below the setting voltage.

The alarm is activated when the main circuit voltage drops below the setting voltage (selectable from 40%, 60% or 80% of the rated main circuit voltage \([V_n]\)).

If the rated main circuit voltage exceeds 250 VAC, a step-down power transformer is needed. When ordering the ACB, state the step-down ratio of the transformer you will use. ※

Note 1: The undervoltage alarm function is disabled once the main circuit voltage has risen to the recovery setting voltage or higher.

Note 2: If the undervoltage alarm function is used in conjunction with the undervoltage trip device (see page 31), an alarm may occur after the ACBs open depending on the alarm setting voltage.

Zone selectivity interlock capability Z

(For AGR-22B and AGR-31B only)

The zone-selective interlock capability permits tripping of the ACB upstream of and nearest to a fault point in the shortest operating time, irrespective of the short time delay trip time setting, and minimises thermal and mechanical damage to the power distribution line.

NON setting and fail-safe feature

NON setting

Setting a trip pickup current function to NON allows you to render the corresponding protection function inoperative. Functions having the NON option include LT, ST, INST/MCR and GF.

Appropriate NON setting will be a useful means for optimum selectivity.

Fail-safe feature

The Protection relay has a fail-safe mechanism in case protection functions are improperly set to NON.

For AGR-11B:

- If the ST and INST trip pickup current functions are both set to NON, the fail-safe mechanism will activate the INST trip function to trip the ACB when a fault current equal to or more than 16 times the rated current \([I_n]\) flows through the ACB.

For AGR-21B, 22B, 31B:

- If the ST trip pickup current function is set to NON, INST trip pickup current function cannot be set to NON and MCR cannot be selected.
- If the INST trip pickup current function is set to NON or if MCR is selected, ST trip pickup current function cannot be set to NON.

For AR663H, even if MCR is selected, the fail-safe mechanism will activate the INST trip function to trip the ACB when a fault current equal to or more than 16 times the rated current \([I_n]\) flows through the ACB.

Field test facility

Type AGR-21B/22B/31B Protection relays are equipped with a field test function to verify the long time delay, short time delay, instantaneous and ground fault trip features without the need for tripping of the ACB.

To check type AGR-11B, use the type ANU-1 Protection relay checker (optional).
Operation Indication Function

1 Indication via single contact (AGR-11B)
When the LT, ST, INST or GF trip function is activated, an output is generated via 1a-contact.

The 1a-contact will turn off after 40ms or more. A self-hold circuit is needed.

2 Indication via individual contacts (AGR-21B, 22B, 31B)
When the LT trip, ST trip, INST/MCR trip, GF trip, ELT, RPT, NS, REF, UVT, pre-trip alarm, or contact temperature monitoring function is activated, LCD will indicate their operation individually and output is generated via the corresponding contact. The Protection relay also has a self-diagnostic feature that monitors the internal tripping circuits. If detecting any fault in the circuits, this feature turns on the system alarm indicator. The control power is needed.

Note 1:
When the LT trip, ST trip, INST/MCR trip, GF trip, ELT, RPT, NS, REF, UVT, pre-trip alarm, or contact temperature monitoring function is activated, LCD will indicate their operation individually and output is generated via the corresponding contact. The Protection relay also has a self-diagnostic feature that monitors the internal tripping circuits. If detecting any fault in the circuits, this feature turns on the system alarm indicator. The control power is needed.

Protection relay with advanced L.C.D. display
Type AGR-31B (contact Terasaki for details)

1 Monitoring various data on L.C.D.

Protection relay can monitor:
- Phase current (A) of I1, I2, I3 and their max. peak current
- Current (A) of I0, I0
- Line voltage (V) of V12, V23, V31 and their max peak voltage (or Phase voltage (V) of V1N, V2N, V3N and their peak voltage
- Harmonics
- Active power (W/kw)
- Power factor (cos ø)
- Electrical energy (Wh/ kWh/ MWh/ GWh)
- Frequency (Hz)
- Trip history

Fault current is monitored, and the operation cause is indicated on LCD and via individual contacts.

Note 1: The supply voltage to the Protection relay for indicating the main circuit voltage or power must not exceed 250VAC, a step-down power transformer is needed. When ordering the ACB, state the step-down ratio of the transformer you will use.

Note 2: Special version without requiring step-down transformer is applicable in the main circuit voltage range from 250 to 690 VAC using the built-in register circuit board. To request the version without a step-down transformer, specify your main circuit voltage.

2 Gives the system alarm with number on the LCD for the following abnormal function.
- Trip function fail
- MHT circuit break

Contact ratings for Operation indication

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>[1] Single Contact</th>
<th>[2] Individual contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistive load</td>
<td>Inductive load</td>
</tr>
<tr>
<td>AC 250</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DC 250</td>
<td>0.3</td>
<td>0.15</td>
</tr>
<tr>
<td>DC 125</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>DC 30</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: 1 To reset the motion indication, press the button on the front of protection relay
Note 2: The contact will turn off after 500 ms or more. Use a self-hold circuit.
Note 3: Only one function can be selected from OH, NS, REF or trip indication.
Selection of two or more functions involves manual correction of their control circuits (custom configuration). Contact Terasaki for details.
Note 4: Only one function can be selected from PT2, UV or spring charge indication.
Selection of two or more functions involves manual correction of their control circuits (custom configuration). Contact Terasaki for details.
Note 5: Motion indication contacts are commonly used for ST and INST/MCR.
#1: A switch is used to indicate the ACB has been tripped. This switch is activated whenever the off button, the overcurrent trip device, shunt trip device or undervoltage trip device is activated.
Protection Relay Selection Table

<table>
<thead>
<tr>
<th>Protection characteristic</th>
<th>Protection Relay</th>
<th>Standard Protection</th>
<th>Ground Fault</th>
<th>N-Phase</th>
<th>Indication and Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LT</td>
<td>ST</td>
<td>INST</td>
<td>MCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Protection Relays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-11BL-AL</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-11BL-GL</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-11BL-AS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-11BL-GS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-21BL-PS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-21BL-PG</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Specialised Protection Relays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-21BR-PS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-21BR-PG</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-21BS-PS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-22BS-PR</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-31BL-PS-H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-31BL-PG-H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-31BR-PS-H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-31BR-PG-H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-31BS-PS-H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGR-31BS-PR-H</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Back Lit option available for AGR-21B

- ● : Available as standard
- ○ : Available as option
- — : Not available

1. Standard Inverse, Very Inverse, Extremely Inverse Curves
2. Only one function can be selected from OH, NS, REF or trip indication. Selection of two or more functions involves manual connection of their control circuits (special specification). Contact Terasaki for details.
3. Only one function can be selected from PTA2, UV, V or spring charge indication. Selection of two or more functions involves manual connection of their control circuits (special specification). Contact Terasaki for details.

For full operational information see pages 37 to 40

Note: When a protection function of AGR-11B protection relay with single contact indication is activated, the corresponding operation LED indicators is ON momentarily or OFF. However the LED indicator is kept ON when the protection function is checked with the optional protection relay checker.

- ○ : Not available if CT rated primary current \([I_{CT}]\) is 200A or less.
- ○ : Available up to 3,200A rated current \([I_n]\).
- ○ : Over AC 250V, a step down VT is required.

- : Only one function can be selected from OH, NS, REF or trip indication. Selection of two or more functions involves manual connection of their control circuits (special specification). Contact Terasaki for details.

For full operational information see pages 37 to 40

Note: When a protection function of AGR-11B protection relay with single contact indication is activated, the corresponding operation LED indicators is ON momentarily or OFF. However the LED indicator is kept ON when the protection function is checked with the optional protection relay checker.

- ○ : Not available if CT rated primary current \([I_{CT}]\) is 200A or less.
- ○ : Available up to 3,200A rated current \([I_n]\).
- ○ : Over AC 250V, a step down VT is required.
Protection Relays

SPECIAL APPLICATIONS

<table>
<thead>
<tr>
<th>Contact Temperature Monitoring</th>
<th>Zone Interlock</th>
<th>Earth Leakage Protection</th>
<th>Reverse Power Protection</th>
<th>Phase Rotation Protection</th>
<th>Under Voltage Alarm</th>
<th>Over Voltage Alarm and Under/Over Frequency Protection</th>
<th>Pre-Trip Alarm</th>
<th>Spring Charge Indication</th>
<th>Trip Indication</th>
<th>Communciation</th>
<th>Field Test</th>
<th>Control Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH ②</td>
<td>Z</td>
<td>ELT ⑤</td>
<td>RPT ⑥</td>
<td>NS ②</td>
<td>UVA ③</td>
<td>PTA ③</td>
<td>PTA2 ③</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the control power is not supplied or is lost, each function operates as follows:

LT, ST, INST, RPT: Operates normally.

GF
- Operates normally
- When the CT rated primary current \([I_{CT}]\) is less than 800A and the GF pick-up current is set to 10 %, the GF becomes inoperative.

MCR: Operates as INST.

PTA
- 1-channel PTA: Is inoperative.
- 2-channel PTA: Is inoperative.

ELT: Is inoperative.

LED indicator on protection relay with single-contact indication: Is on momentarily or off.

Contact output from protection relay with single-contact indication: Turns off after 40 ms or more.

Contact output from protection relay with individual contact indication: Is inoperative.

LCD: Will display without backlit.

Field test facility: Is inoperative.
L-characteristic for general feeder circuits (Type AGR-11BL, 21BL, 31BL)

Protection functions

<table>
<thead>
<tr>
<th>Protection functions</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustable long time-delay trip characteristics</td>
<td>LT</td>
</tr>
<tr>
<td>Time-delay [tR] (s)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Time-delay setting tolerance (%)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Adjustable short time-delay trip characteristics</td>
<td>ST</td>
</tr>
<tr>
<td>Pick-up current [I0] (A)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Time-delay [t0] (ms) Relay time</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Resettable time (ms)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Max. total clearing time (ms)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Adjustable instantaneous trip characteristics</td>
<td>INST</td>
</tr>
<tr>
<td>Pick-up current [Ii] (A)</td>
<td>±20%</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±20%</td>
</tr>
<tr>
<td>Time-delay [ti] (s)</td>
<td>±20%</td>
</tr>
<tr>
<td>Adjustable pre-trip alarm characteristics</td>
<td>PTA</td>
</tr>
<tr>
<td>Pick-up current [Ia] (A)</td>
<td>±5%</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±5%</td>
</tr>
<tr>
<td>Time-delay [ta] (s)</td>
<td>±5%</td>
</tr>
<tr>
<td>Adjustable ground fault trip characteristics</td>
<td>GF</td>
</tr>
<tr>
<td>Pick-up current [Ig] (A)</td>
<td>±20%</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±20%</td>
</tr>
<tr>
<td>Time-delay [tg] (ms)</td>
<td>±20%</td>
</tr>
<tr>
<td>Adjustable instantaneous trip characteristics</td>
<td>INST</td>
</tr>
<tr>
<td>Pick-up current [Ii] (A)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Time-delay setting tolerance (%)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Adjustable pre-trip alarm characteristics</td>
<td>PTA</td>
</tr>
<tr>
<td>Pick-up current [Ia] (A)</td>
<td>±5%</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±5%</td>
</tr>
<tr>
<td>Time-delay [ta] (s)</td>
<td>±5%</td>
</tr>
<tr>
<td>Adjustable ground fault trip characteristics</td>
<td>GF</td>
</tr>
<tr>
<td>Pick-up current [Ig] (A)</td>
<td>±20%</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±20%</td>
</tr>
<tr>
<td>Time-delay [tg] (ms)</td>
<td>±20%</td>
</tr>
<tr>
<td>Adjustable earth leakage trip characteristics</td>
<td>ELT</td>
</tr>
<tr>
<td>Pick-up current [Ile] (A)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Current setting tolerance (%)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Time-delay [tle] (ms) Relay time</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Resettable time (ms)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Max. total clearing time (ms)</td>
<td>±15% +150ms – 0ms</td>
</tr>
<tr>
<td>Undervoltage alarm characteristics</td>
<td>UV</td>
</tr>
<tr>
<td>Recovery setting voltage (V)</td>
<td>±5%</td>
</tr>
<tr>
<td>Recovery voltage setting tolerance (%)</td>
<td>±5%</td>
</tr>
<tr>
<td>Setting voltage (V)</td>
<td>±5%</td>
</tr>
<tr>
<td>Voltage setting tolerance (%)</td>
<td>±5%</td>
</tr>
<tr>
<td>Time-delay (s)</td>
<td>±5%</td>
</tr>
<tr>
<td>Time-delay setting tolerance (%)</td>
<td>±5%</td>
</tr>
<tr>
<td>Control power</td>
<td>±5%</td>
</tr>
</tbody>
</table>

Note: Set [Ii] to 1200A or less.

<table>
<thead>
<tr>
<th>Setting range</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT [I0] × (0.8 – 0.85 – 0.9 – 0.95 – 1.0 – 1.05 – 1.1) & 6 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST [I0] × (1 – 1.5 – 2 – 2.5 – 3 – 4 – 6 – 8 – 10 – 12 – 14 – 16 – NON) & 9 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INST [Ii] × (0.1 – 0.2 – 0.3 – 0.4 – 0.6 – 0.8 – 1.0 – 1.2 – 1.6 – 2 – 2.4 – 2.8 – 3.2 – 3.6 – 4) & 10 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTA [Ia] × (0.1 – 0.2 – 0.3 – 0.4 – 0.6 – 0.8 – 1.0 – NON) & 6 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF [Ig] × (0.2 – 0.3 – 0.4 – 0.5 – 0.6 – 0.7 – 0.8 – 0.9 – 1.0) & 9 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELT [Ile] × (0.4 – 0.5 – 0.6 – 0.7 – 0.8 – 0.9 – 1.0) & 6 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV [IV] × (0.8 – 0.85 – 0.9 – 0.95) & 4 graduations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>±15% +150ms – 0ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common: AC100 – 120V, DC100 – 125V, Common DC24V, Common DC48V

Power consumption: 5 VA

Default setting. Note: AGR-31B allows fine adjustment settings.
Protection Relays

Protection functions
- Over voltage alarm
- Under/Over Frequency Protections (UFOP)
- Voltage setting

Setting range

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable</th>
<th>Rated current</th>
<th>(I_{ct}) (A)</th>
<th>(I_{in}) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR208S</td>
<td>200 100 125 160 200</td>
<td>0.5 0.63 0.8 1.0</td>
<td>200 200 250 320 400</td>
<td>800 500 800 1000 1250</td>
</tr>
<tr>
<td>AR212S</td>
<td>400 200 250 320 400</td>
<td>0.5 0.63 0.8 1.0</td>
<td>800 500 800 1000 1250</td>
<td></td>
</tr>
<tr>
<td>AR216S</td>
<td>1600 800 1600 1000 1250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable</th>
<th>Rated current</th>
<th>(I_{ct}) (A)</th>
<th>(I_{in}) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR220S</td>
<td>200 100 125 160 200</td>
<td>0.5 0.63 0.8 1.0</td>
<td>400 200 250 320 400</td>
<td>800 500 800 1000 1250</td>
</tr>
<tr>
<td>AR325H</td>
<td>1250 1000 2000 1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR332H</td>
<td>3200 1600 3200 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR440H</td>
<td>4000 2000 4000 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating time
- Voltage setting \(\text{[V]}\)
- Time setting \(\text{[s]}\)

Values of \([I_{CT}]\) and \([I_{IN}]\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable</th>
<th>Rated current</th>
<th>(I_{ct}) (A)</th>
<th>(I_{in}) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR208S</td>
<td>200 100 125 160 200</td>
<td>0.5 0.63 0.8 1.0</td>
<td>200 200 250 320 400</td>
<td>800 500 800 1000 1250</td>
</tr>
<tr>
<td>AR212S</td>
<td>400 200 250 320 400</td>
<td>0.5 0.63 0.8 1.0</td>
<td>800 500 800 1000 1250</td>
<td></td>
</tr>
<tr>
<td>AR216H</td>
<td>1600 800 1600 1000 1250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protection characteristics

- Over voltage alarm
- Voltage setting
- Time setting

- Under/Over Frequency Protections (UFOP)
- Voltage setting
- Time setting

Note: Total breaking time for AR6 is 0.05sec.
Protection Relays

R-characteristic for general feeder circuits (Type AGR-21BR, 31BR)

Protection functions

- **Adjustable long time-delay trip characteristics**
 - LT
 - Pick-up current I_{LT} (A)
 - Current setting tolerance (%)
 - Time-delay t_{LT} (s)
 - Time-delay setting tolerance (%)

- **Adjustable short time-delay trip characteristics**
 - ST
 - Pick-up current I_{ST} (A)
 - Current setting tolerance (%)
 - Time-delay t_{ST} (ms) Relay time
 - Max. total clearing time (ms)

- **Adjustable instantaneous trip characteristics**
 - INST
 - Pick-up current I_{INST} (A)
 - Current setting tolerance (%)
 - Time-delay t_{INST} (ms) Relay time
 - Max. total clearing time (ms)

- **Adjustable earth leakage trip characteristics**
 - EL T
 - Pick-up current $I_{EL T}$ (A)
 - Current setting tolerance (%)
 - Time-delay $t_{EL T}$ (ms) Relay time
 - Max. total clearing time (ms)

Setting range

Select one from among I_{LT}, I_{ST}, I_{LT}, I_{ST}, and I_{LT} on LT20.

- $I_{LT} \times (0.8 – 0.85 – 0.95 – 1.0 – NON) \times 6$ graduations
- $I_{ST} \times (1 – 2 – 3 – 4 – 5 – 6 – 6.8 – 10) \times 8$ graduations
- $I_{LT} \times (0.85 – 0.9 – 0.95 – 1.0) \times 6$ graduations
- $I_{ST} \times (1 – 2 – 3 – 4 – 5 – 6 – 6.8 – 10) \times 8$ graduations
- $I_{LT} \times (0.85 – 0.9 – 0.95 – 1.0) \times 6$ graduations

Protection functions table

<table>
<thead>
<tr>
<th>LT/ST/INST/ELT</th>
<th>Setting range</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{LT}</td>
<td>(0.8 – 0.85 – 0.9 – 0.95 – 1.0 – NON)</td>
<td>6 graduations</td>
</tr>
<tr>
<td>I_{ST}</td>
<td>(1 – 2 – 3 – 4 – 5 – 6 – 6.8 – 10)</td>
<td>8 graduations</td>
</tr>
<tr>
<td>I_{LT}</td>
<td>(0.85 – 0.9 – 0.95 – 1.0)</td>
<td>6 graduations</td>
</tr>
<tr>
<td>I_{ST}</td>
<td>(1 – 2 – 3 – 4 – 5 – 6 – 6.8 – 10)</td>
<td>8 graduations</td>
</tr>
<tr>
<td>I_{LT}</td>
<td>(0.85 – 0.9 – 0.95 – 1.0)</td>
<td>6 graduations</td>
</tr>
</tbody>
</table>

Protection functions (cont.)

- **Protection functions table (cont.)**
 - Note: Set I_{LT} to 1200A or less.
 - I_{LT} | I_{ST} | I_{LT} | I_{ST} | I_{LT} | I_{ST} | I_{LT} | I_{ST} |
 - I_{LT} | I_{ST} | I_{LT} | I_{ST} | I_{LT} | I_{ST} | I_{LT} | I_{ST} |

Power supply

- AC100 – 120V
- DC100 – 125V
- DC24V
- DC48V

Power consumption

- 5VA
Protection Relays

Protection functions
- Over voltage alarm
 - Voltage setting
 - Time setting
- Under/Over Frequency Protections (UOF)
 - Voltage setting
 - Time setting
 - Mode

Values of \([I_{CT}]\) and \([I_n]\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable</th>
<th>Rated current ([I_n])(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(I_{CT})</td>
</tr>
<tr>
<td>AR208S</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>AR212S</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250</td>
</tr>
<tr>
<td>AR216S</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1600</td>
</tr>
</tbody>
</table>

Setting range

\[I_n\] \(\times\) (105% to 150%) V, Tolerance: ±5% *1% step

0.1 to 5.0 (sec) at voltage setting or less, Tolerance: ±15%, +0.1s-0s *0.1 sec step

\[I_n\] \(\times\) (1% to 99%) V, *1% step

0.1 to 10 (sec) *0.1 sec step

Total breaking time

Note: Total breaking time for ARI is 0.05sec.

Choosing accessories and a protection relay | 47

Protection characteristics

[Diagram showing protection characteristics and setting range]

The ST trip characteristic shown in the figure applies when the ramp characteristic select switch is in the OFF position.

Note: Total breaking time for ARI is 0.05sec.
Protection Relays

S-characteristic for general feeder circuits (Type AGR-21BS, 22BS, 31BS)

Protection functions

- **Adjustable long time-delay trip characteristics**
 - Pick-up current \(I_{pL} \) (A)
 - Current setting tolerance (%)
 - Time-delay \(t_{RL} \) (s)
 - Time-delay setting tolerance (%)

- **Adjustable short time-delay trip characteristics**
 - Pick-up current \(I_{pS} \) (A)
 - Current setting tolerance (%)
 - Time-delay \(t_{RS} \) (s)
 - Time-delay setting tolerance (%)

- **Adjustable pre-trip alarm characteristics**
 - Pick-up current \(I_{pl} \) (A)
 - Current setting tolerance (%)
 - Time-delay \(t_{PL} \) (s)
 - Time-delay setting tolerance (%)

- **Adjustable instantaneous trip characteristics**
 - Pick-up current \(I_{i} \) (A)

- **Adjustable reverse power trip characteristics**
 - Pick-up power \(P_{PR} \) (kW)
 - Time-delay \(t_{R} \) (s)
 - Power setting tolerance (%)
 - Time-delay setting tolerance (%)

- **Undervoltage alarm characteristics**
 - Voltage setting \(V_{U} \) (V)
 - Recovery setting voltage (V)
 - Recovery voltage setting tolerance (%)
 - Setting voltage (V)
 - Voltage setting tolerance (%)
 - Time-delay (s)
 - Time-delay setting tolerance (%)

- **Over voltage alarm**
 - Voltage setting \(V_{O} \) (V)

- **Under/Over Frequency Protections (UFOF)**
 - Voltage setting \(F_{U} \)
 - Time setting \(F_{T} \)
 - Voltage setting \(F_{V} \)
 - Time setting \(F_{T} \)
 - Mode

- **Control power**

Setting range

<table>
<thead>
<tr>
<th>Setting</th>
<th>(I_{pL})</th>
<th>(I_{pS})</th>
<th>(t_{RS})</th>
<th>(t_{PL})</th>
<th>(t_{RS})</th>
<th>(t_{RS})</th>
<th>(t_{RS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting range</td>
<td>((0.8 – 1.0 – 1.05 – 1.1 – 1.15 – NON))</td>
<td>((0.75 – 0.8 – 0.85 – 0.9 – 0.95 – 1.0 – 1.05))</td>
<td>((0.4 – 0.5 – 0.6 – 0.8))</td>
<td>((0.8 – 0.85 – 0.9 – 0.95))</td>
<td>((0.75 – 0.8 – 0.85 – 0.9 – 0.95 – 1.0 – 1.05))</td>
<td>((0.8 – 0.85 – 0.9 – 0.95))</td>
<td>((0.4 – 0.6 – 0.8))</td>
</tr>
</tbody>
</table>
| \(\times \time
Choosing accessories and a protection relay

Protection Relays

Type	Protection relay rated primary current \(I_{CT} \) (A)	Applicable range of generator rated current \(I_n \) (A)
AR208S | 200 | 100 \(\leq I_n \leq 200 \)
 | 400 | 200 \(< I_n \leq 400 \)
 | 800 | 400 \(< I_n \leq 800 \)
 | 1000 | 500 \(< I_n \leq 1000 \)
 | 1250 | 630 \(< I_n \leq 1250 \)
AR212S | 400 | 200 \(\leq I_n \leq 400 \)
 | 800 | 400 \(< I_n \leq 800 \)
 | 1000 | 500 \(< I_n \leq 1000 \)
 | 1250 | 630 \(< I_n \leq 1250 \)
AR216S | 400 | 200 \(\leq I_n \leq 400 \)
 | 800 | 400 \(< I_n \leq 800 \)
 | 1000 | 500 \(< I_n \leq 1000 \)
 | 1250 | 630 \(< I_n \leq 1250 \)
 | 1600 | 800 \(< I_n \leq 1600 \)
AR220S | 400 | 200 \(\leq I_n \leq 400 \)
 | 800 | 400 \(< I_n \leq 800 \)
 | 1000 | 500 \(< I_n \leq 1000 \)
 | 1250 | 630 \(< I_n \leq 1250 \)
 | 1600 | 800 \(< I_n \leq 1600 \)
 | 2000 | 1250 \(< I_n \leq 2000 \)
AR220H | 400 | 200 \(\leq I_n \leq 400 \)
 | 800 | 400 \(< I_n \leq 800 \)
 | 1000 | 500 \(< I_n \leq 1000 \)
 | 1250 | 630 \(< I_n \leq 1250 \)
 | 1600 | 800 \(< I_n \leq 1600 \)
 | 2000 | 1250 \(< I_n \leq 2000 \)
AR316H | 2500 | 1250 \(< I_n \leq 2500 \)
AR320H | 3200 | 2000 \(< I_n \leq 3200 \)
AR325H | 3200 | 2500 \(< I_n \leq 3200 \)
AR332H | 3200 | 3200 \(< I_n \leq 3200 \)
AR420H | 800 | 400 \(< I_n \leq 800 \)
 | 1000 | 500 \(< I_n \leq 1000 \)
 | 2000 | 1000 \(< I_n \leq 2000 \)
AR440H | 2000 | 1600 \(< I_n \leq 2000 \)
AR663H | 5000 | 2500 \(< I_n \leq 5000 \)
 | 6300 | 3200 \(< I_n \leq 6300 \)

Protection characteristics

The ST trip characteristic shown in the figure applies when the ramp characteristic select switch is in the OFF position.

Operating time
- 0.006 second
- 0.01 minute
- 0.02 hour
- 0.04 second
- 0.06 second
- 0.1 second
- 0.2 second
- 0.4 second
- 0.6 second
- 1 second
- 2 seconds
- 4 seconds
- 6 seconds
- 10 seconds
- 20 seconds
- 40 seconds

% of generator rated power
- 60%
- 70%
- 80%
- 90%
- 100%
- 12.5%
- 15%
- 20%
- 25%
- 30%
- 40%
- 50%
- 60%
- 70%
- 80%
- 90%
- 100%

Note: Total breaking time for AR6 is 0.05 sec.
Other Accessories

Protection relay checker, type ANU-1

The Protection relay checker allows easy checking of the long-time delay trip, short time-delay trip, instantaneous trip, ground fault trip functions and the pre-trip alarm function of the Protection relay in the field.

Ratings and Specifications

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>AC100-240V; 50/60Hz with type C plug 4 x AA alkaline cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption</td>
<td>7VA</td>
</tr>
<tr>
<td>Dimensions</td>
<td>101(W) x 195 (H) x 44 (D) mm</td>
</tr>
<tr>
<td>Weight</td>
<td>400g</td>
</tr>
</tbody>
</table>

Measurement output

- Long time delay trip pickup current
- Long time delay trip pickup time
- Short time delay trip pickup current
- Short time delay trip pickup time
- Instantaneous trip pickup current
- MCR trip pickup current
- Ground fault trip pickup current
- Ground fault trip pickup time
- N-phase protection trip pickup current
- N-phase protection trip pickup time
- Pre-trip alarm pickup current
- Pre-trip alarm pickup time

Protection relay checker, type ANU-2

Protection relay test interface unit ANU-2 is a testing tool designed for checking the functionality of type AGR Protection relay (overcurrent release). Using this tool in conjunction with a commercial constant-current generator allows easy on-site testing of the Protection relay. The reverse power trip function of the protection relay can also be tested using the tool.

Protection relay test interface unit ANU-2 is a device that converts current into voltage. In addition to the unit, a constant-current generator is needed to test the Protection relay. Use a generator with a continuous rating of 5A (50/60 Hz) and a short-time rating of 50A (50/60 Hz) for 10 seconds (500 VA).

Ratings and Specifications

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Input External power supply (through power cable with AC adapter) 100 to 240V AC 50/60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output 9V DC</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>7VA</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W160 x H90 x D220 (mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>2kg</td>
</tr>
</tbody>
</table>

Measurement Output

- Long time delay trip pickup current
- Short time delay trip pickup current
- Instantaneous trip pickup current
- Instantaneous trip operation
- MCR trip pickup current
- Ground fault trip pickup current
- N-phase protection trip pickup current
- Pre-trip alarm pickup current
- Reverse power protection trip pickup current *4
- Long time delay trip pickup time simplified testing *3
- Reverse power protection trip pickup time (simplified testing) *3 *4
- Pre-trip alarm pickup time (simplified testing) *3

Accessories

- Power cable with AC adaptor (2m)
- Plug adaptor
- Signal cable (3m)
- Operation manual

*1 Can be measured only when the input current does not exceed 50A
*2 Not applicable for types AGR-11 or AGR-11B
*3 A stopwatch is requirement for measurement
*4 Applicable for types AGR-22BS-PR and AGR-31BS-PR only.
Choosing accessories and a protection relay

Current transformer for neutral line (separate type)

When using a 3-pole ACB with the ground fault protection function to protect a 3-phase, 4-wire system against ground fault, install an appropriate current transformer (CT) to the neutral line of the system.

TERASAKI can provide this neutral line CT as an option.

For the 4-pole ACB, a measuring CT instead of the neutral line CT is already built into the neutral phase of the ACB when the ground fault protection is fitted.

Outline dimension of CT for neutral line

<table>
<thead>
<tr>
<th>Type</th>
<th>Primary Current (A)</th>
<th>Rated secondary current is 5A *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW80-40LS</td>
<td>200, 1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400, 1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

The over-current trip device of **TemPower 2** provides a ground fault protection on the line side (optional) as well as on the load side as shown above. When the ACB is used for protection of a 3-pole, 4-wire system, select the same current transformer for the neutral line shown above. Two current transformers are required for 3 pole restricted earth fault ACBs.

* Note: Neutral CT must be mounted with face K towards the ACB upper terminals irrespective of power direction.
Installing the TemPower 2 ACB

SECTION 4

Operation Environments .. 55

Dimensions .. 56-69

Connections ... 70-75

Circuit Diagrams ... 76-81
Operation Environments

Standard environment

The standard environment for ACBs is follows:

<table>
<thead>
<tr>
<th>Operation Environment</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>-5°C to +50°C (Derating may apply) the average temperature for 24 hours must not exceed 35°C.</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Below 85%</td>
</tr>
<tr>
<td>Altitude</td>
<td>Below 2000m</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Excessive water vapor, smoke, dust or corrosive gases must not exist. Sudden change in temperature, condensation or icing must not occur.</td>
</tr>
<tr>
<td>Vibration</td>
<td>The TemPower 2 ACB is designed to withstand electromagnetic and mechanical vibrations in accordance with IEC 68-2-6. (2-13.2 Hz with amplitude of +/- 1mm; 13.2 to 100 Hz with an acceleration of 0.7g).</td>
</tr>
<tr>
<td>Storage and Operation</td>
<td>Min. permissible temperature -20°C</td>
</tr>
<tr>
<td>Temperature</td>
<td>Max. permissible temperature 60°C</td>
</tr>
</tbody>
</table>

Special environment

Tropicalisation (Fungus and moisture treatment)

Specify this treatment when the ACB is used under high temperature and high humidity conditions.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. permissible ambient temperature 60°C</td>
<td></td>
</tr>
<tr>
<td>Max. permissible humidity 95% rel.</td>
<td></td>
</tr>
<tr>
<td>No condensation</td>
<td></td>
</tr>
</tbody>
</table>

Cold climate treatment

Specify this treatment when the ACB is used in cold areas.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. permissible storage temperature -40°C (max 60°C)</td>
<td></td>
</tr>
<tr>
<td>Min. permissible operating temperature -25°C (max 40°C)</td>
<td></td>
</tr>
<tr>
<td>No condensation</td>
<td></td>
</tr>
</tbody>
</table>

Anti-corrosion treatment

Specify this treatment when the ACB is used in a corrosive atmosphere.

Contact Terasaki for details.
Dimensions

Type: AR208S, AR212S, AR216S, AR220S
AR212H, AR216H, AR220H Draw-out type

Terminal size

<table>
<thead>
<tr>
<th>Type</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR208S</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>17.5</td>
</tr>
<tr>
<td>AR212S</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>17.5</td>
</tr>
<tr>
<td>AR216S</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>22.5</td>
</tr>
<tr>
<td>AR220S</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>AR212H</td>
<td>20</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR216H</td>
<td>20</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR220H</td>
<td>20</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Conductors including connecting bolts should be separated min. 7mm from Draw-out arm.
2. Panel cut should be 339 mm not 335 mm when the door flange is used.

* N represents the neutral pole of 4-pole ACB
* The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customized so that it is positioned to the left.
* For High fault series vertical terminal is standard and horizontal terminal is optional, and front connection is not available.
* The vertical terminal for the main circuit with its length extended by 70 mm from the standard is specially available on request.
* For the outline drawing for the version with earth leakage tripping, contact us.
Installing the TemPower 2 ACB

Dimensions

Front connections

Vertical terminals

Horizontal terminals

Draw-out arm (comes out when breaker is drawn out)
TemPower 2 Air Circuit Breakers

Type: AR208S, AR212S, AR216S, AR220S
AR212H, AR216H, AR220H Fixed type

<table>
<thead>
<tr>
<th>Type</th>
<th>Ø1</th>
<th>Ø2</th>
<th>Ø3</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR208S</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>17.5</td>
</tr>
<tr>
<td>AR212S</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>17.5</td>
</tr>
<tr>
<td>AR216S</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>22.5</td>
</tr>
<tr>
<td>AR220S</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>AR212H</td>
<td>20</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AR216H</td>
<td>20</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AR220H</td>
<td>20</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* Panel cutout

*2 Panel cut should be 339 mm not 335 mm when the door flange is used.

*N represents the neutral pole of 4-pole ACB

The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customised so that it is positioned to the left.

For Type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.

* For the outline drawing for the version with earth leakage tripping, contact us.
Installing the TemPower 2 ACB
Type: AR325S, AR332S, AR316H, AR320H, AR325H, AR332H Draw-out type

E: ACB Front cover centre line

*1: Conductors including connecting bolts should be separated min-7mm from Draw-out arm.

*2: Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 35.

• N represents the neutral pole of 4-pole ACBs. The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customized so that it is positioned to the left.

• For type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.

• The vertical terminal for the main circuit with its length extended by 70 mm from the standard is specially available on request.

• For the outline drawing for the version with earth leakage tripping, contact us.
Installing the TemPower 2 ACB

Dimensions

Front connections

Vertical terminals

Horizontal terminals

1: Conductors including connecting bolts should be

2: Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 35.

• N represents the neutral pole of 4-pole ACBs.

• For type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.

• The vertical terminal for the main circuit with its length extended by 70 mm from the standard is specially available on request.

• For the outline drawing for the version with earth leakage tripping, contact us.
Type: AR325S, AR332S, AR316H, AR320H, AR325H, AR332H Fixed type

\(\mathcal{P} \): ACB Front cover centre line

- **Dimensions**
- **Type:** AR325S, AR332S, AR316H, AR320H, AR325H, AR332H Fixed type

Panel cutout

- Front panel cut
- Maintenance space

Panel cutout

- Front panel cut
- Maintenance space

Dimensions

- **N** represents the neutral pole of 4-pole ACBs. The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customized so that it is positioned to the left.

- For type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.

- For the outline drawing for the version with earth leakage tripping, contact us.
Installing the TemPower 2 ACB

Dimensions

- **Front connections**
- **Vertical terminals**
- **Horizontal terminals**

Mounting hole ø14

- **Control circuit terminal cover (optional)**

Conductor overlap max.

- **ON-OFF button cover**

- **2-ø20 Lifting hole**

- **M8 screw earth terminal**

Maintenance space

- **Main terminal**

Panel

- **3-ø11**

Conductor overlap max.

- **N represents the neutral pole of 4-pole ACBs.**

- **For type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.**

- **For the outline drawing for the version with earth leakage tripping, contact us.**

Page 63
Type: AR440SB Draw-out type

- **P:** ACB Front cover centre line
- **C:** Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 35.
- **N:** Represents the neutral pole of 4-pole ACBs.
Installing the TemPower 2 ACB

Dimensions

- Dimensions:
 - N: 130
 - 15
 - 20
 - 17.5
 - 22
 - 20
 - 289
 - 211 (3P)
 - 331 (4P)
 - 422 (3P)
 - 542 (4P)

- Mounting holes not required.

- L- Angle Steel to prevent ACB to fall down (Mounting holes not required).

- Control circuit terminal cover (optional).

- CONNECTED position.

- TEST position.

- ISOLATED position.

- ON-OFF button cover.

- Front panel.

- Rear panel.

- M8 screw earth terminal (only right side).

- Lifting hole.

- (Conductor overlap max.)
Types: AR440S, AR420H (3 poles only), AR440H (3 poles only)

\(C \) : ACB Front cover centre line

* 1: Conductors including connecting bolts should be separated min.-7mm from Draw-out arm.
* 2: Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 35.

- \(N \) represents the neutral pole of 4-pole ACBs.
- AR420H and AR440H are 3 poles only.
Dimensions

- **Control circuit terminal cover (optional)**
- **CONNECTED position**
- **TEST position**
- **ISOLATED position**
- **ON-OFF button cover**
- **Front panel**
- **Rear panel**
- **Lifting hole**
- **M8 screw earth terminal**
- **Draw-out arm (comes out when breaker is drawn out)**

Front panel
- 9
- 375
- 295
- 141
- 193
- 428
- 94
- 20
- 40 (conductor overlap max.)

Rear panel
- 10
- 190
- 40
- 25
- 15

Control circuit terminal cover (optional)
- 2
- 20
- 10
- 40

ON-OFF button cover
- 12
- 17
- 14
- 21
- 14

Lifting hole
- 4-ø 14
- 4-ø 11

M8 screw earth terminal
- 42.5 (3P)
- 48 (4P)
- 42.5 (3P)
- 48 (4P)

Draw-out arm (comes out when breaker is drawn out)
- 417 (3P)
- 587 (4P)

Dimensions
- **N**
- **R116**
- **42.5**
- **238250**
- **500**
- **C P**
- **490**
- **460**
- **33**

4-ø 20

- **2**
- **181**
- **181**
- **25**
- **50**
- **10**
- **10**
- **165**
- **40520**
- **329**
- **335**

Panel cutout
- **draw-out handle**

Maintenance space
- **For fitted with breaker fixing bolts**

Dimensions
- **N**
- **R116**
- **42.5**
- **238250**
- **500**
- **C P**
- **490**
- **460**
- **33**

4-ø 20

- **2**
- **181**
- **181**
- **25**
- **50**
- **10**
- **10**
- **165**
- **40520**
- **329**
- **335**

Panel cut
- **339 mm not 335 mm when the door flange is used. Refer to page 35.**

Conductors including connecting bolts should be separated min-7mm from Draw-out arm.

N represents the neutral pole of 4-pole ACBs.

AR420H and AR440H are 3 poles only.
Type: AR650S, AR663S, AR663H, Draw-out type

*2: Panel cut should be 339 mm not 335 mm when the door flange is used. Refer to page 35.

- N represents the neutral pole of 4-pole ACBs.
Connect conductors to the main circuit terminals in the conductor connection.
Insulation distance of conductor connection area and earth metal is more than 12.5mm. (*Not available on H-Type).

(Front connections are not available on H Type ACBs)

- **Vertical terminals 3P**
 - Right side view
 - Back view

- **Horizontal terminals 3P**
 - Right side view
 - Back view

- **Front connections 3P**
 - Right side view
 - Back view

- **Vertical terminals 4P**
 - Right side view
 - Back view

- **Horizontal terminals 4P**
 - Right side view
 - Back view

- **Front connections 4P**
 - Right side view
 - Back view

- **Vertical terminals 3P**
 - Right side view
 - Back view

- **Vertical terminals 4P**
 - Right side view
 - Back view

- **Horizontal terminals 3P**
 - Right side view
 - Back view

- **Horizontal terminals 4P**
 - Right side view
 - Back view

- **Front connections 3P**
 - Right side view
 - Back view

- **Front connections 4P**
 - Right side view
 - Back view
Types: AR440S, AR420H, AR440H

- **Vertical terminals 3P**

- **Vertical terminals 4P**
Type: AR440SB

- Vertical terminals 3P

- Vertical terminals 4P
Types: AR650S, AR663S, AR663H

- **Vertical terminals 3P**

- **Vertical terminals 4P**
When two busbars are connected to a terminal stud of the ACB, sandwich the terminal stud between the two busbars to utilise both surfaces of the terminal. A spring and plain washer must be used in conjunction with the busbar bolt and nut as below.

Recommendation for Busbars connection

The busbars to the ACB should be firmly supported near the ACB terminal. Fault currents flow though the busbars developing a large electromagnetic force between the busbars. The support must be strong enough to withstand such forces and ensure enough insulating distance. The ACB should not be relied on as a single support.

<table>
<thead>
<tr>
<th>Distance L (mm)</th>
<th>Short-circuit current (kA)</th>
<th>30</th>
<th>50</th>
<th>65</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR2</td>
<td></td>
<td>300</td>
<td>250</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR3</td>
<td></td>
<td>350</td>
<td>300</td>
<td>250</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR440SB</td>
<td></td>
<td>350</td>
<td>300</td>
<td>250</td>
<td>150</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR440S, AR420H, AR440H</td>
<td></td>
<td>350</td>
<td>300</td>
<td>250</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>AR6</td>
<td></td>
<td>350</td>
<td>300</td>
<td>250</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>
Circuit Diagram (with AGR-11B Protection Relay)

Main circuit
CT for neutral line
Operation
Motor charging / Operation circuit
Continuously-rated shunt trip

Terminal description
Check protection relay voltage before connecting.
02 22 Control power supply AC100 - 240V, DC100 - 250V, DC24V, DC48V
12 Operation switch, common
03 ON switch
05 Operation indication terminal, common
15 Protection relay trip indication or single-contact trip indication (AL/GL 40ms signal, AS/GS latching)
17 Trip indication (not ready indication)
27 Spring charge indicator
10 20 Continuously-rated shunt trip
19 Separate CT for neutral line (k)
28 Separate CT for neutral line (x)
06 16 28 UVT power supply
09 UVT power supply common
* Do not exceed specified voltages

Over-current release (type AGR-11B Protection Relay)

Motor charging / Operation circuit

Continuously-rated shunt trip

Symbols for accessories
CT1 - CT3 : Power CTs
S1 - S3 : Current sensors
M : Charging motor
LRC : Latch release coil
MHT : Magnetic Hold Trigger
--- Isolating terminal connector
(for draw-out type)
--- Manual connector
--- User wiring
--- Relay or indicator lamp
*1: Do not connect “b”contact of auxiliary switch to ON switch in series, otherwise, pumping may occur.
*2: See page 30 for the circuit diagram of the continuously-rated shunt trip device with capacitor trip device.
*3: For motor split circuit, terminals M, LRC and MHT are used for charging and closing operation respectively.
*4: Only one of terminals 10 – 0, A, B, C must be used as this is a single phase UVT.
*5: Do not use these terminals for other circuits when both instantaneously rated shunt trip and UVT are fitted. These terminals are used by Terasaki as the anti-burnout SW for the instantaneously rated shunt trip.
Note: In case of a UVT and a Shunt fitted together or Double opening or closing coil, use an aux. switch to prevent burnout. Contact TERASAKI for wiring.

UVT power supply

<table>
<thead>
<tr>
<th>Term. No.</th>
<th>AC 100V unit</th>
<th>AC 200V unit</th>
<th>AC 400V unit</th>
<th>AC 450V unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 – 09</td>
<td>100V 200V</td>
<td>380V 450V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 – 09</td>
<td>110V 220V</td>
<td>415V 480V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 – 09</td>
<td>120V 240V</td>
<td>440V 400V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term. No.</th>
<th>DC 24V unit</th>
<th>DC 48V unit</th>
<th>DC 100V unit</th>
<th>DC 110V unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 – 09</td>
<td>24V 48V</td>
<td>100V 110V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Installing the TemPower 2 ACB

Circuit Diagram (with AGR-11B Protection Relay)

Undervoltage trip

- UVT power supply
 - Common
 - 11: Under-voltage trip
 - 12: Over-current release

Position switches

- 01: Operation switch
 - Top: 03, 04
 - Middle: 05, 06
 - Bottom: 07, 08

Auxiliary switches

- 10: Auxiliary switch
 - 1A: 01, 02
 - 1B: 03, 04
 - 1C: 05, 06

Designation of terminals for auxiliary and position switches

1: Common
2: b-contact
3: a-contact
4: Switch numbers
A, B, C: Auxiliary switches for microload

- CONNECTED position: 121–124 ON
 - 121–122 OFF
- TEST position: 131–134 ON
 - 131–132 OFF
- ISOLATED position: 141–144 ON
 - 141–142 OFF
- INSERT position: 151–154 ON
 - 151–152 OFF

For operation sequence of position switches, see page 27.

Operation/control circuits

- 01: 02, 03, 04, 05, 06, 07, 08, 09

Auxiliary switches

- 4c arrangement
 - 111, 121, 131, 141
 - 114, 124, 134, 144
 - 112, 122, 132, 142

- 6c arrangement
 - 111, 121, 131, 141
 - 114, 124, 134, 144
 - 112, 122, 132, 142

- 3c arrangement
 - 111, 121, 131
 - 114, 124, 134
 - 112, 122, 132

Note: In case of a UVT and a Shunt fitted together or Double instantaneously rated shunt trip and UVT are fitted. These terminals are used by Terasaki as the anti-burnout SW for the instantaneously rated shunt trip. For motor split circuit, terminals 1, 2, and 3 are used for charging and closing operation respectively. (Please specify when ordering)

4: Only one of terminals 1, 2, and 3 must be used as this is a single phase UVT.

5: Do not use these terminals for other circuits when both UVT power supply and UVT power supply common terminals are used.

Check protection relay voltage before connecting. Control power supply AC100–240V, DC100–250V, DC24V, DC48V.
Over-current release
(type AGR-21B Protection Relay)

<table>
<thead>
<tr>
<th>Term. No.</th>
<th>AC 100V unit</th>
<th>AC 200V unit</th>
<th>AC 400V unit</th>
<th>AC 450V unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 – 09</td>
<td>100V</td>
<td>200V</td>
<td>300V</td>
<td>400V</td>
</tr>
<tr>
<td>18 – 19</td>
<td>110V</td>
<td>220V</td>
<td>415V</td>
<td>480V</td>
</tr>
<tr>
<td>26 – 27</td>
<td>120V</td>
<td>240V</td>
<td>440V</td>
<td>400V</td>
</tr>
</tbody>
</table>

Separate CT for neutral line (k)

Separate CT for neutral line

CT for neutral line

Control power

Operation

Motor charging/Operation circuit

Continuously-rated shunt trip

CT1 - CT3 : Power CTs
S1 - S3 : Current sensors
M : Charging motor
LRC : Latch release coil
MHT : Magnetic Hold Trigger
- - - Isolating terminal connector (for draw-out type)
- - - Manual connector
- - - User wiring
- - - Relay or indicator lamp

1: Do not connect "b"contact of auxiliary switch to ON switch in series, otherwise, pumping may occur.
2: See page 30 for the circuit diagram of the continuously-rated shunt trip device with capacitor trip device.
3: Only one of terminals 06, 08 and 09 must be used as this is a single phase UVT.
4: Do not use these terminals for other circuits when both instantaneously rated shunt trip and UVT are fitted. These terminals are used by TERASAKI as the anti-burnout SW for the instantaneously rated shunt trip.

Note: In case of a UVT and a Shunt fitted together or Double opening or closing coil, use an aux. switch to prevent burnout. Contact TERASAKI for wiring.
Installing the TemPower 2 ACB

Circuit Diagram (with AGR-21B Protection Relay)

Undervoltage trip

Position switches

Auxiliary switches

Designation of terminals for auxiliary and position switches

1: Common
2: b-contact
3: a-contact
4: c-contact

1: Auxiliary switch
2: Position switch (for CONNECTED)
3: Position switch (for TEST)
4: Position switch (for ISOLATED)
5: Position switch (for INSERT)

1 – 0: Switch numbers
A, B, C: Auxiliary switches for microload

CONNECTED position: 121–124 ON
TEST position: 131–134 ON
ISOLATED position: 141–144 ON
INSERT position: 151–154 ON

For operation sequence of position switches, see page 27.

Operation/control circuits

Auxiliary switches

(4c + optional 6c arrangement)

111 211 311 411 511 611 711 811 911 101
112 212 312 412 512 612 712 812 912 102

(4c arrangement)

111 211 311 411
114 214 314 414
112 212 312 412

312 33 35 36 37 38 39 40 41 42 Manual connection

If the ground fault protection on the line side or communication function is incorporated, control circuit terminals are of manual connection type.
Check protection relay voltage before connecting.

Main circuit
- Control power supply AC200 - 240V, DC200 - 250V, DC48V
- Control power supply AC100 - 120V
- Control power supply DC100 - 125V, DC24V
- Control power supply AC100 - 240V, DC100 - 250V, DC24V, DC48V
- Operation switch, common
- Operation indication terminal, common
- LT trip indication
- ST, INST trip indication
- PT A indication
- GF trip indication or RPT trip indication
- System alarm indication
- REF, SH, NS, LFDF or trip indication
- UV, OV or spring charge indication
- Continuously-rated shunt trip
- Separate CT for neutral line (k)

Terminal description

- Separate CT for neutral line (k)
- UVT power supply
- UVT power supply common
- Separate CT for REF (k)
- Separate CT for REF (k)
- Communication line (–)
- Communication line (+)
- Communication line (common)
- UVT power supply
- DC 100V unit
- DC 200V unit
- DC 400V unit
- DC 110V unit
- Term. No. 08 18 28
- AC 100V unit
- AC 200V unit
- AC 400V unit
- AC 450V unit
- Term. No. 08 09 10 11 12 13 14 15 16 17
- 100V 200V 380V 450V
- 110V 220V 415V 480V
- 120V 240V 440V 400V
- 204V 48V 100V 110V

Symbols for accessories
- CT1 - CT3: Power CTs
- S1 - S3: Current sensors
- M: Charging motor
- LRC: Latch release coil
- MHT: Magnetic Hold Trigger
- Isolating terminal connector (for draw-out type)
- Manual connector
- User wiring
- Relay or indicator lamp
- UVT control circuit
- UVT

Do not exceed specified voltages

- UVT power supply

Operation

- Over-current release
 (type AGR-22B, 31B Protection Relay)

Motor charging/continuously-rated shunt trip

- ON switch
- Spring charge
- OFF
- PB
- PB

Position switches

- CONNECTED position: 121–124 ON
- TEST position: 121–122 OFF
- ISOLATED position: 131–134 ON
- INSERT position

Auxiliary switches

- 1: Common
- 2: b-contact
- 3: Auxiliary switch
- 4: a-contact
- 5: Position switch (for CONNECTED)
- 6: Position switch (for TEST)
- 7: Position switch (for ISOLATED)
- 8: Position switch (for INSERT)

Contact protection relay voltage before connecting.

Check protection relay voltage before connecting.

- Do not connect "b"contact of auxiliary switch to ON switch in series, otherwise, pumping may occur.
- See page 30 for the circuit diagram of the continuously-rated shunt trip device with capacitor trip device.
- For motor split circuit, terminals 141–144 and 151–154 are used for charging and closing operation respectively.
- (Please specify when ordering)
- Ref. to page 31 (short pulse only)
- Only one of terminals 08, 09, 10, 11 must be used as this is a single phase UVT.
- Do not use these terminals for other circuits when both instantaneously rated shunt trip and UVT are fitted.
- These terminals are used by Terasaki as the anti-burnout SW for the instantaneously rated shunt trip.

Note: In case of a UVT and a Shunt fitted together or Double opening or closing coil, use an aux. switch to prevent burnout. Contact TERASAKI for wiring.
Installing the TemPower 2 ACB

Circuit Diagram (with AGR-22B, 31B Protection Relay)

Undervoltage trip

Position switches

Auxiliary switches

Designation of terminals for auxiliary and position switches

1. Common
2. b-contact
3. a-contact
4. Position switch (for CONNECTED)
5. Position switch (for TEST)
6. Position switch (for ISOLATED)
7. Position switch (for INSERT)

1 – 0: Switch numbers
A, B, C: Auxiliary switches for microload

CONNECTED position: 121–124 ON
TEST position: 131–134 ON
ISOLATED position: 141–144 ON
INSERT position: 151–154 ON

For operation sequence of position switches, see page 27.

Auxiliary switches

(4c + optional 6c arrangement)

(4c arrangement)

Manual connection

If the ground fault protection is incorporated and a separate current transformer for neutral line is used, or any one of ground fault protection on the line side, zone interlock or communication function is incorporated, control circuit terminals are of manual connection type.
SECTION 5

Technical Data

Dielectric strength .. 84

Discrimination ... 85-88

Section Contents | 83
Dielectric strength

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Withstand voltage (at 50/60 Hz)</th>
<th>Rated Impulse withstand voltage</th>
<th>U_{imp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main circuit</td>
<td>Between terminals, terminal group to earth</td>
<td>AC3500V for 1 minute</td>
<td>12kV</td>
</tr>
<tr>
<td>Auxiliary switches</td>
<td>For general service, terminal group to earth</td>
<td>AC2500V for 1 minute</td>
<td>6kV</td>
</tr>
<tr>
<td></td>
<td>For microload, terminal group to earth</td>
<td>AC2000V for 1 minute</td>
<td>4kV</td>
</tr>
<tr>
<td>Position switches</td>
<td>Terminal group to earth</td>
<td>AC2000V for 1 minute</td>
<td>4kV</td>
</tr>
<tr>
<td>Over-current release (OCR)</td>
<td>Terminal group to earth</td>
<td>AC2000V for 1 minute</td>
<td>4kV</td>
</tr>
<tr>
<td>Power supply for undervoltage/</td>
<td>reverse power trip function</td>
<td>Terminal group to earth</td>
<td>6kV</td>
</tr>
<tr>
<td>Other accessories</td>
<td>Terminal group to earth</td>
<td>AC2000V for 1 minute</td>
<td>4kV</td>
</tr>
</tbody>
</table>

Note: The values shown above are those measured on phase connections and cannot be applied to control terminals on the ACB.

Internal resistance and power consumption

Standard Series

<table>
<thead>
<tr>
<th>Type</th>
<th>AR208S</th>
<th>AR212S</th>
<th>AR216S</th>
<th>AR220S</th>
<th>AR252S</th>
<th>AR322S</th>
<th>AR440S</th>
<th>AR460S</th>
<th>AR650S</th>
<th>AR663S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current (A)</td>
<td>800</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>4000</td>
<td>4000</td>
<td>5000</td>
<td>6300</td>
</tr>
<tr>
<td>DC internal resistance per pole (m)</td>
<td>0.033</td>
<td>0.033</td>
<td>0.028</td>
<td>0.024</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>Power consumption for 3 poles (W)</td>
<td>64</td>
<td>155</td>
<td>215</td>
<td>288</td>
<td>263</td>
<td>430</td>
<td>816</td>
<td>672</td>
<td>900</td>
<td>1190</td>
</tr>
</tbody>
</table>

High fault Series

<table>
<thead>
<tr>
<th>Type</th>
<th>AR212H</th>
<th>AR216H</th>
<th>AR220H</th>
<th>AR316H</th>
<th>AR320H</th>
<th>AR325H</th>
<th>AR332H</th>
<th>AR420H</th>
<th>AR440H</th>
<th>AR663H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current (A)</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>2000</td>
<td>4000</td>
<td>6300</td>
</tr>
<tr>
<td>DC internal resistance per pole (mΩ)</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.010</td>
</tr>
<tr>
<td>Power consumption for 3 poles (W)</td>
<td>113</td>
<td>184</td>
<td>238</td>
<td>288</td>
<td>108</td>
<td>168</td>
<td>263</td>
<td>430</td>
<td>158</td>
<td>672</td>
</tr>
</tbody>
</table>

Note: Above figures are based on the calculation of 3I^2R. For more information please contact TERASAKI.

Temperature De-rating

Based on Standard

- JIS C 8301-2-1 Ann.1 Ann.2
- IEC60947-2, EN60947-2
- AS3947.2
- ANSI C37.13
- NEMA, SG-3

<table>
<thead>
<tr>
<th>Type</th>
<th>AR208S</th>
<th>AR212S</th>
<th>AR216S</th>
<th>AR220S</th>
<th>AR252S</th>
<th>AR322S</th>
<th>AR440S</th>
<th>AR460S</th>
<th>AR650S</th>
<th>AR663S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal terminals</td>
<td>800</td>
</tr>
<tr>
<td>Vertical terminals</td>
<td>800</td>
</tr>
<tr>
<td>Front connections</td>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>AR212S</th>
<th>AR216S</th>
<th>AR220S</th>
<th>AR316S</th>
<th>AR320S</th>
<th>AR325S</th>
<th>AR332S</th>
<th>AR420S</th>
<th>AR440S</th>
<th>AR663S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal terminals</td>
<td>1250</td>
</tr>
<tr>
<td>Vertical terminals</td>
<td>1250</td>
</tr>
<tr>
<td>Front connections</td>
<td>1250</td>
</tr>
</tbody>
</table>

- **Note 1:** If different type of terminal arrangement are used for line and load sides refer to the ratings for the horizontal terminals.
- **Note 2:** Front connection can not be specified with the different types of terminal arrangement for line and load sides.
- **Note 3:** Contact TERASAKI for details.
Technical Data

Discrimination

Standard Series

<table>
<thead>
<tr>
<th>Based Standards</th>
<th>Ambient temperature (°C)</th>
<th>Type</th>
<th>Connecting bar sizes</th>
<th>AR208S</th>
<th>AR212S</th>
<th>AR216S</th>
<th>AR228S</th>
<th>AR325S</th>
<th>AR440SB</th>
<th>AR440S</th>
<th>AR650S</th>
<th>AR663S</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS C 8201-2-1 Ann.1 Ann.2</td>
<td>40 (Standard ambient temperature)</td>
<td>800</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>4000</td>
<td>4000</td>
<td>5000</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>IEC60947-2</td>
<td>45</td>
<td>800</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>4000</td>
<td>4000</td>
<td>5000</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>EN 60947-2 AS3947.2</td>
<td>50</td>
<td>800</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>3940</td>
<td>4000</td>
<td>4950</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>800</td>
<td>1200</td>
<td>1540</td>
<td>1820</td>
<td>2500</td>
<td>2990</td>
<td>3620</td>
<td>3940</td>
<td>4710</td>
<td>5680</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>800</td>
<td>1150</td>
<td>1460</td>
<td>1740</td>
<td>2400</td>
<td>2850</td>
<td>3690</td>
<td>3760</td>
<td>4450</td>
<td>5370</td>
<td></td>
</tr>
<tr>
<td>NEMA, SG-3 ANSI C37.13</td>
<td>40 (Standard ambient temperature)</td>
<td>800</td>
<td>1250</td>
<td>1540</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>3310</td>
<td>3700</td>
<td>4700</td>
<td>5680</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>800</td>
<td>1190</td>
<td>1470</td>
<td>1960</td>
<td>2500</td>
<td>3010</td>
<td>3200</td>
<td>3580</td>
<td>4450</td>
<td>5370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>800</td>
<td>1130</td>
<td>1390</td>
<td>1860</td>
<td>2440</td>
<td>2860</td>
<td>3100</td>
<td>3470</td>
<td>4180</td>
<td>5050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>790</td>
<td>1070</td>
<td>1310</td>
<td>1750</td>
<td>2300</td>
<td>2690</td>
<td>2980</td>
<td>3350</td>
<td>3900</td>
<td>4710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>740</td>
<td>1000</td>
<td>1230</td>
<td>1640</td>
<td>2150</td>
<td>2520</td>
<td>2870</td>
<td>3140</td>
<td>3610</td>
<td>4350</td>
<td></td>
</tr>
</tbody>
</table>

Note: The values are applicable for both Draw-out type and Fixed type.

The values of AR208S, AR212S and AR216S are for horizontal terminals on both line and load side.

The values of AR220S, AR325S, AR332S, AR440SB, AR440S, AR650S and AR663S are for vertical terminals on both line and load side.

Above figures are subject to the design of the enclosure and rating of busbar.

High Fault Series

<table>
<thead>
<tr>
<th>Based Standards</th>
<th>Ambient temperature (°C)</th>
<th>Type</th>
<th>Connecting bar sizes</th>
<th>AR212H</th>
<th>AR216H</th>
<th>AR220H</th>
<th>AR316H</th>
<th>AR320H</th>
<th>AR325H</th>
<th>AR332H</th>
<th>AR420H</th>
<th>AR440H</th>
<th>AR663H</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS C 8201-2-1 Ann.1 Ann.2</td>
<td>40 (Standard ambient temperature)</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>4000</td>
<td>6300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC60947-2</td>
<td>45</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>4000</td>
<td>6300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 60947-2 AS3947.2</td>
<td>50</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>4000</td>
<td>6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>1250</td>
<td>1600</td>
<td>1820</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>2990</td>
<td>3940</td>
<td>5680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1250</td>
<td>1550</td>
<td>1740</td>
<td>1600</td>
<td>2000</td>
<td>2400</td>
<td>2850</td>
<td>3760</td>
<td>5370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMA, SG-3 ANSI C37.13</td>
<td>40 (Standard ambient temperature)</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td>2000</td>
<td>5680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1250</td>
<td>1600</td>
<td>1960</td>
<td>2000</td>
<td>2500</td>
<td>2990</td>
<td>3010</td>
<td>2000</td>
<td>3580</td>
<td>5370</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1250</td>
<td>1600</td>
<td>1860</td>
<td>1600</td>
<td>2000</td>
<td>2440</td>
<td>2860</td>
<td>2000</td>
<td>3470</td>
<td>5050</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>1250</td>
<td>1510</td>
<td>1750</td>
<td>1600</td>
<td>1950</td>
<td>2300</td>
<td>2690</td>
<td>2000</td>
<td>3350</td>
<td>4710</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1240</td>
<td>1420</td>
<td>1640</td>
<td>1550</td>
<td>1830</td>
<td>2150</td>
<td>2520</td>
<td>2000</td>
<td>3140</td>
<td>4350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The values are applicable for both Draw-out type and Fixed type.

The values are for vertical terminals on both line and load side.

Above figures are subject to the design of the enclosure and rating of busbar.
Discrimination, also called selectivity, is the co-ordination of protective devices such that a fault is cleared by the protective device installed immediately upstream of the fault, and by that device alone.

Total discrimination

Discrimination is said to be total if the downstream circuit breaker opens and the upstream circuit breaker remains closed. This ensures maximum availability of the system.

Partial discrimination

Discrimination is partial if the above condition is not fulfilled up to the prospective short circuit current, but to a lesser value, termed the selectivity limit current (I_s).

Above this value both circuit breakers could open, resulting in loss of selectivity.

How to Read the Discrimination Tables

Boxes containing the letter “T” indicate total discrimination between the relevant upstream and downstream circuit breakers. Total discrimination applies for all fault levels up to the breaking capacity of the upstream or the downstream circuit breaker, whichever is the lesser.

For the other boxes, discrimination is either partial or there is no discrimination

Worked Examples

A main switchboard requires a 1600A ACB feeding a 400A MCCB. The fault level is 65kA. What combination of protective devices would provide total discrimination?

A TemPower 2 ACB AR216S feeding a TemBreak2 S400GJ would provide total discrimination up to 65kA. See page 87.

Note: Discrimination would be total whether the TemPower 2 ACB had an integral or external protection relay because $(1s) = I_{cs}$ Most other ACBs have $I_{cw} (1s) < I_{cs}$.
Technical Data

Upstream: TemPower 2 ACB with or without Integral Protection Relay
Downstream: TemBreak 2 MCCB

<table>
<thead>
<tr>
<th>Frame</th>
<th>800A</th>
<th>1250A</th>
<th>1600A</th>
<th>2000A</th>
<th>2500A</th>
<th>3200A</th>
<th>4000A</th>
<th>5000A</th>
<th>6300A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65ka</td>
<td>65ka</td>
<td>80ka</td>
<td>65ka</td>
<td>80ka</td>
<td>100ka</td>
<td>65ka</td>
<td>80ka</td>
<td>100ka</td>
</tr>
<tr>
<td>125A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E125NJ</td>
<td>25kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S125NJ</td>
<td>36kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S125GJ</td>
<td>65kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H125NJ</td>
<td>125kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>L125NJ</td>
<td>200kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>160A/250A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S160NJ</td>
<td>36kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S160GJ</td>
<td>65kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>E250NJ</td>
<td>25kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S250NJ</td>
<td>36kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S250GJ</td>
<td>65kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S250PE</td>
<td>70kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H250NJ</td>
<td>125kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>L250NJ</td>
<td>200kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>400A/630A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E400NJ</td>
<td>25kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400CJ</td>
<td>36kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400NJ</td>
<td>50kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400NE</td>
<td>50kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400GJ</td>
<td>70kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400GE</td>
<td>70kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400PJ</td>
<td>85kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S400PE</td>
<td>85kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H400NJ</td>
<td>125kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H400NE</td>
<td>125kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>E630NE</td>
<td>36kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S630CE</td>
<td>50kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S630GE</td>
<td>70kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>800A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S800-CJ</td>
<td>35kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S800-NJ</td>
<td>50kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S800-RJ</td>
<td>70kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S800-NE</td>
<td>50kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S800-RE</td>
<td>70kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H800-NE</td>
<td>125kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>L800-NE</td>
<td>200kA</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1000A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1000-SE</td>
<td>50kA</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S1000-NE</td>
<td>50kA</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1250A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1250-SE</td>
<td>50kA</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S1250-NE</td>
<td>70kA</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>S1250-GJ</td>
<td>100kA</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1600A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1600-SE</td>
<td>50kA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S1600-NE</td>
<td>100kA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: 1. All ACBs have I set at NON, MCR ON.
2. Assuming ACB time settings are greater than MCCB.
3. The above table is in accordance with EC 60947-2, Annex A.
4. External relay can be used - Contact Terasaki for further details.
5. All values shown at 400V AC.
Discrimination with 'T' type fuses

The following table should be used as a guide when selecting Terasaki TemPower 2 Air Circuit Breakers and fuses (BS88/IEC60260) which are immediately downstream from a transformer.

I_R and I_T are set to the full rated current of the transformer, and t_R, Isd and tsd are at standard transformer settings. Listed are the maximum fuse ratings that can be used when downstream from a given ACB at these settings.

Also included are the maximum fuse ratings that can be used downstream when t_R, Isd and tsd are at their maximum settings.

All information listed is based on a transformer secondary voltage of 415V.

<table>
<thead>
<tr>
<th>TRANSFORMER</th>
<th>5</th>
<th>630</th>
<th>750</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.L.C. (A)</td>
<td>696</td>
<td>876</td>
<td>1043</td>
<td>1113</td>
<td>1391</td>
<td>1739</td>
<td>2226</td>
<td>2782</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TemPower 2</th>
<th>Type</th>
<th>AR208S</th>
<th>AR212S</th>
<th>AR212S</th>
<th>AR212S</th>
<th>AR216S</th>
<th>AR220S</th>
<th>AR325S</th>
<th>AR332S</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.T. (A)</td>
<td>800</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SETTINGs (AGR-L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
</tr>
<tr>
<td>In (sec)</td>
</tr>
<tr>
<td>Isd</td>
</tr>
<tr>
<td>tsd (msec)</td>
</tr>
</tbody>
</table>

Max. fuse rating with standard ACB settings

<table>
<thead>
<tr>
<th>Note: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Amps)</td>
</tr>
<tr>
<td>355</td>
</tr>
</tbody>
</table>

Max. fuse rating with maximum ACB settings

<table>
<thead>
<tr>
<th>Note: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Amps)</td>
</tr>
<tr>
<td>450</td>
</tr>
</tbody>
</table>

> The above 'In' settings are based on 100% of Rated Current (kA).

Notes:
Note: 1 It is possible to increase the maximum fuse rating by utilising the ‘ramp’ facility on the on the TemPower2 Protection Relay (AGR).
Note: 2 Information on fuses above 1250A rating was not available.
Note: 3 All ACBs have li Instantaneous set to NON. (MCR can be set to ON)

Please note the above table is meant only for guidance, individual installations should have a specific discrimination study undertaken.
Useful related products and services

SECTION 6

- External Control and Monitoring Devices for ACBs 90-91
- Life-cycle Services 92-93
- Circuit Breaker Selectivity Software 94
External Control and Monitoring Devices for ACBs

Monitoring and Communication: T2ED

T2ED is a new Terasaki external display for TemPower 2 ACBs and TemBreak 2 MCCBs. It displays circuit measurements and information about the installed breaker in an easily readable way. T2ED may be used as a stand-alone local display. T2ED is also able to transfer all this information directly to a Modbus network.

Special Features:
- View circuit values and breakers data safely from the outside
- Easy direct connection from breaker to T2ED (no need for communication module)
- Easy direct connection from T2ED to Modbus (no need for communication module)
- Analogue, numerical and bar graph views

Technical Characteristics:
- Rated voltage: DC24V (Applicable range of voltage: DC18 to DC 31V)
- Consumption (at DC24V): 50mA
- Dimensions: (96 x 96 x 50) mm
- Serial Interface: RS485
- Protocol: Modbus-RTU
- Transmission method: Two-wire half duplex

Multi-Protection Relay: TemTrip 2

TemTrip2 is a multi-protection relay for medium or low voltage circuit breakers that is capable of indicating via LEDs that the load current is picked up or the breaker trips open and showing various information including the phase current, line voltage and fault current on the LCD.

The relay is available in three types: for generator protection, feeder circuit protection and transformer protection.

<table>
<thead>
<tr>
<th>PRR-1H-G</th>
<th>PRR-1H-F</th>
<th>PRR-1H-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator protection</td>
<td>Feeder circuit</td>
<td>Transformer protection</td>
</tr>
<tr>
<td>Adjustable long time-delay trip</td>
<td>LT</td>
<td>○</td>
</tr>
<tr>
<td>Adjustable short time-delay trip</td>
<td>ST</td>
<td>○</td>
</tr>
<tr>
<td>Adjustable instantaneous trip</td>
<td>INST</td>
<td>○</td>
</tr>
<tr>
<td>Adjustable undervoltage trip</td>
<td>UV(27)</td>
<td>○</td>
</tr>
<tr>
<td>Adjustable overvoltage trip</td>
<td>OV(59)</td>
<td>○</td>
</tr>
<tr>
<td>Adjustable reverse power trip</td>
<td>RP(67R)</td>
<td>○</td>
</tr>
<tr>
<td>Adjustable ground fault trip</td>
<td>Overvoltage ground</td>
<td>OVR(64)</td>
</tr>
<tr>
<td></td>
<td>Directional ground</td>
<td>DGR(67G)</td>
</tr>
<tr>
<td>Ratio differential trip</td>
<td>DIFF(87G)</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>(87T)</td>
<td>–</td>
</tr>
<tr>
<td>Pre-trip alarm</td>
<td>(PTA)</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>PTA2</td>
<td>○</td>
</tr>
</tbody>
</table>

Special Features:
- Multi-protection
- Ground fault detection via zero-phase voltage
- Directional ground fault detection
- Ratio differential characteristic
- Reverse power trip
- Readout of trip/alarm cause
- Internal clock
- Self-diagnostic
TemTransfer 3 Automatic Changeover Controller for TemPower 2 ACBs, TemBreak 2 MCCBs and TemContact 2 Contactors

TemTransfer 3 is an Automatic Transfer Switch Controller. The TemTransfer 3 will monitor the voltage and frequency of the AC supply from two different sources, which could be from both generator or mains (utility), or a combination of both. The module will monitor S1 (source 1) and in the event of a failure will issue a start command to S2 (source 2).

Earth Leakage Protection Relays

Terasaki TemProtect monitoring and control devices provide earth leakage protection and monitoring for most industrial and commercial applications. They are used to monitor earth currents to protect electrical equipment and personnel against dangers such as electric faults.

TemProtect has been designed to be as flexible as possible to suit a wide range of applications. The range includes Din Rail, Panel or base mount versions, relays suitable for use in AC systems (unaffected by DC components which may be present).

All relays comply with international standards including IEC 60255.

- Adjustable tripping current and time delay setting
- Selectable automatic or manual reset facility
- Adjustable time/current multiplier setting
- Test button
- LEDs to indicate the units status

Schematic Diagram: Example of the Automatic Changeover with TemTransfer 3 and TemBreak 2 Interlocked MCCBs
Retrofitting refers to the addition of new technology to older systems. Retrofit ACBs can replace ageing, unsafe switches and circuit breakers.

Top 5 reasons to use Retrofit

1. **Improve safety and functionality**
 Modern circuit breakers offer safety interlocks, remote switching and circuit monitoring.

2. **Optimise existing plant**
 Static components in a switchboard (the steelwork and busbar system) can be retained. Only the functional, moving parts (the circuit breakers) are replaced. Retrofitting is typically 80% cheaper than switchboard replacement with minimum downtime.

3. **Guaranteed spares availability**
 Terasaki guarantee spare parts availability for at least 10 years after the withdrawal from sale of a circuit breaker.

4. **Modernise the protection system**
 Old protection relays can be removed and replaced with modern microprocessor protection which is integral to the ACB with automatic plc controls.

5. **Reduce arc flash hazard**
 Modern ACBs clear short-circuits much faster than older types. This means that the incident arc energy is correspondingly lower.

Terasaki’s Retrofit Services

We prefer to conduct a site survey for every retrofit project - even if the breaker to be replaced is already on our design database. This ensures that the installation is as quick as possible, with minimum disruption to the client’s supply.

Verified Designs

Tested to current standard
ASTA tested to IEC 61439 for short-circuit withstand (lcw)
GEC MPact
Ellison
English Electric

Low voltage arc hazard reduction
1. Remove switching using umbilical cord controller
2. Faster opening time reduces incident arc energy. TemPower 2 ACB can be set to open a short-circuit in less than 30 milliseconds (typically at least twice as fast as the device it will replace).

Modern protection
The AGR Protection relay can replace the functions of several devices in an existing switchboard to provide:
- restricted earth fault protection
- overcurrent protection
- data communication to BMS or SCADA
- plc control

Manufacture and assembly
Manufacture, assembly and routine testing is carried out at Terasaki’s facility in Glasgow, Scotland. The factory and processes are certified to the ISO 9001 quality management standard.

Some of our Retrofit designs can be installed without a shutdown. Where this is not possible, our team will ensure that disruption is minimised.

Verified

We design retrofit ACBs on request. If you are interested in a brand which is not shown below we would be happy to examine it. New designs are continually added to our portfolio. Check the latest list on the Terasaki website: www.terasaki.co.uk

- Terasaki
- Ellison
- GEC
- Merlin Gerin
- Siemens
- Unelec
- Square D
- Mitsubishi
- Sace
- ABB
- Hyundai
- AEG
- English Electric
- MEM
- Klockner Moeller
The main electrical incomer to Royal Bank of Canada’s UK headquarters in London was tripping spuriously and engineers became worried that a sudden and complete failure of the power supply could result. The faulty device, a Merlin Gerin DA 4000 ACB, was obsolete and irreparable. 26 other Selpact and DA 4000 ACBs in the switchboard were also obsolete.

Engineers had permission to shut down the main power supply for only one weekend – not long enough for the switchboard to be replaced or for any modifications to be made to the copperwork. Terasaki’s Direct Response Service Division had what they needed: a retrofit solution. The Terasaki TemPower 2 retrofit ACBs were designed to match the connections and mountings of the existing ACBs exactly. There was no need to modify the switchboard and all 27 ACBs were replaced safely and quickly.

REPLACEMENT OF 27 MERLIN GERIN ACBS WITH TERASAKI ACBs

The main electrical incomer to Royal Bank of Canada’s UK headquarters in London was tripping spuriously and engineers became worried that a sudden and complete failure of the power supply could result. The faulty device, a Merlin Gerin DA 4000 ACB, was obsolete and irreparable. 26 other Selpact and DA 4000 ACBs in the switchboard were also obsolete.

Engineers had permission to shut down the main power supply for only one weekend – not long enough for the switchboard to be replaced or for any modifications to be made to the copperwork. Terasaki’s Direct Response Service Division had what they needed: a retrofit solution. The Terasaki TemPower 2 retrofit ACBs were designed to match the connections and mountings of the existing ACBs exactly. There was no need to modify the switchboard and all 27 ACBs were replaced safely and quickly.

Retrofit Case Study

Terasaki Retrofit Project Reference

Client: Royal Bank of Canada
Project: Retrofit
Location: 71 Queen Victoria Street, London
Retrofit:
- 24 x Merlin Gerin Selpact 1000A
- 3 x Merlin Gerin DA 4000A
Type: to TemPower 2
Capability:
- 27 circuit breakers replace by TemPower 2 retrofit ACBs
- Only one week-end shutdown
- No disturbance to switchboard or copperwork
- Safe and fast

Retrofit Details

- Merlin Gerin DA 4000 x 3
- Merlin Gerin Selpact x 24
- Building power down: 10:00 Friday
- 27 Terasaki TemPower 2 retrofit ACBs installed
- Building re-energised 12:00 Sunday

Other Services

Spares Policy (Circuit Breakers)

Terasaki guarantees availability of breaker spare parts for at least 10 years after the breaker’s withdrawal from sale. Beyond that period the Direct Response Service Division will continue to support older products in the field carrying out routine maintenance and repairs on-site.

The Direct Response Service Division can provide a recommended spares list, based on the specification of all breakers on site. We usually recommend a combination of “complete” and “component” spares.

Warranty Extension

Terasaki offers one year standard warranty for our breakers. However you can extend it up to 4 or 5 years depending on project requirements.
TemCurve Lite 3.0

TemCurve Lite Selectivity Software can assist in protection device grading from the transformer primary to the point of final distribution. The software is designed for the Terasaki range of circuit breakers, but also includes a large number of complimentary protection devices such as low and high voltage fuses and relays.

TemCurve Lite 3.0 is FREE

- The software package is now multilingual allowing you to select from: English, Italian, Spanish, Russian, Swedish, Chinese and Japanese language options
- It can output DXF and PDF files
- Latest product developments included: TemBreak 2 Lite MCCBs and TemBreak 2 CBRs.
Fixed and Drawout Pattern ACB’s AR208 to AR663 (800A to 6300A)

COMPANY NAME:

EMAIL ADDRESS:

CONTACT NAME:

ORDER NUMBER:

TELEPHONE NUMBER:

QUANTITY:

FAX NUMBER:

DELIVERY TIME REQUEST:

1. **TemPower 2 ACB:** Enter your choice in the boxes provided (Refer to the catalogue for ratings and specifications)

<table>
<thead>
<tr>
<th>TERA SAKI ACB TYPE</th>
<th>AR</th>
<th>FOR EXAMPLE - AR 325</th>
</tr>
</thead>
</table>

ENTER CIRCUIT BREAKER TYPE - Type S, H or SB

ENTER RATED CURRENT - Amps

ENTER SENSOR KIT RATING - Ict

ENTER NUMBER OF POLES

2. **Mounting, Connections, Shutters and System Type:** Select required boxes.

Fixed Pattern.

Drawout Pattern.

Trip - Connections.

Button - Connections.

Control Circuit Terminal Cover

Main Circuit Shutters

Control Circuit Shuters

System Voltage

3. **AGR - Protection Relay and Protection Options:** Tick required boxes.

Non Automatic.

Go to Section 4 - Indication

<table>
<thead>
<tr>
<th>Protection Functions</th>
<th>AGR-11B</th>
<th>AGR-21/22B</th>
<th>AGR-31B (x33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy Protection - Dial</td>
<td>AGR-11BL</td>
<td>AGR-21BL</td>
<td>AGR-31B (x33)</td>
</tr>
<tr>
<td>Standard Protection - LCD</td>
<td>AGR-11BR</td>
<td>AGR-21BR</td>
<td>AGR-31B (x33)</td>
</tr>
<tr>
<td>Enhanced Protection - LCD</td>
<td>AGR-11BS</td>
<td>AGR-21BS</td>
<td>AGR-31B (x33)</td>
</tr>
</tbody>
</table>

Protection Options

- Neutral Phase Protection - N
- Mechanical Reset - M (Only A and GS types)
- S1-Contact Temperature Monitoring - OH
- S1-Trip Indicator
- S1-Phase Rotation Protection - NS
- S1- Restricted Ground Fault - RF
- S1-Second Pre Trip Alarm - PTA2
- S2-Undervoltage Alarm - UVA
- S2-Over Voltage Alarm, Underv/Over Frequency - V
- S2-Spring Charge Indicator
- Zone Interlock - Z
- Communication - C

For LCD and AS/GS type AGR specify control voltage

| AC100-120V | AC200-240V | DC24V | DC48V | DC110-250V | DC220-250V |

Example of AGR Protection Relay Description

Relay Key

Protection Relay Family:

Protection Relay Group

Protection Function and Indication.

A = LSI PROTECTION (as standard on all protection relays)

G = A + UNRESTRICTED GROUND FAULT PROTECTION.

F = A + PRE TRIP ALARM.

R = A + REVERSE POWER.

AGR BL Type Protection Relay - INDUSTRIAL & TRANSFORMER

AGR BS Type Protection Relay - GENERATOR

AGR BR Type Protection Relay - CHARACTERISTICS TO IEC 60255-3

Notes:

NOTES:

- Only one function can be selected from section A1.
- Only one function can be selected from section A2.
- Restricted Ground Fault only available with PG function.
TemPower 2 Order Form

Fixed and Drawout Pattern ACB’s AR208 to AR663 (800A to 6300A)

4. Indication Accessories: Tick required boxes.

- 4AB Auxiliary Switches
- 7AB Auxiliary Switches
- 10AB Auxiliary Switches

4 Position Switches (Write a '0', '1' or a '2', total 4)

= Total 4.

Non-Auto Trip Indication Switch - Normal (Not Ready to Close)
Non-Auto Trip Indication Switch - Normal

Ready to Close Switch

5. Electrical Operation Accessories: Tick required boxes.

- Double Closing Coil 24V DC & 240V AC Only (Short Rated)
- Double Shunt Trip Coil 24V DC & 240V AC Only (Short Rated)
- Split Circuit** (For Motor and Closing Coil)

**Split Circuit - Voltages for the motor and closing coil must be indicated below.

AC - Control Voltage

Motor Operator and Closing coil

Motor Operator (Split Circuit)**

DC - Control Voltage

Shunt Trip Continuously Rated (Short Rated with UVT)

Motor Operator and Closing coil

Motor Operator (Split Circuit)**

- Door Flanges IP20
- Door Flanges IP31
- Standard Drawout Handle
- Storage Drawout Handle
- Insertion prevention Device (Insert Code in Box)
- InterPole Barriers (Not Applicable for Front Connections)
- Step Down Transformer (P380-440V/S220V)
- Tropicalisation Treatment
- Anti-Corrosion Treatment
- Cold Climate Treatment
- Test Report (Enter Number of Copies in Box)

- Horizontal Mechanical Interlock for three ACBs, Gen. ACB Interlocked with outer ACBs
- Horizontal Mechanical Interlock for three ACBs, one or two from three
- Horizontal Mechanical Interlock for two ACBs, one from two
- Horizontal Mechanical Interlock for three ACBs, one from three

Type A - Indicate position of Gen. ACB

- All Types - Pitch 'P1' (1st & 2nd), 'P2' (2nd & 3rd)

Vertical Mechanical Interlock for two ACBs, one from two

Enter Vertical Pitch 'P' Between ACBs

Door Interlock

Indicate type of drawout handle required Section 6 – External Accessories.

Cabinet Lock (Lock in Off) and key

Lock in Off Padlock Facility

Cabinet Lock (Lock in Off) - Facility only

Cabinet Lock (Lock in On) - Facility only

Cabinet Lock (Lock in On) - Key (Factory fitted)

Cabinet Lock (Lock in On) - Key (Factory fitted)

Chassis Cabinet (Lock in isolate) - Facility only

Chassis Cabinet (Lock in isolate) - Lock and Key (Factory fitted)

- Body (Portable Part)
- Chassis (Permanent Part)

Earthing Device Note:
Not available with front connections.
Not recommended with a UVT, as manual disconnection is required.

For Customer Notes or References.